
Polyspace® Bug Finder™ Server™
User’s Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Server™ User's Guide
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 3.0 (R2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Polyspace Analysis on Server After Code Submission
1

Prepare Scripts for Polyspace Analysis 1-2
Options Related to Source Code and Target 1-3
Options Related to Polyspace Analysis 1-5

Configure Polyspace Analysis Options in User Interface and
Generate Scripts . 1-7

Prerequisites . 1-9
Generate Scripts from Configuration 1-9
Run Analysis with Generated Scripts 1-10

Sample Scripts for Polyspace Analysis with Jenkins 1-13
Extending Sample Scripts to Your Development Process 1-14
Prerequisites . 1-15
Set Up Polyspace Plugin in Jenkins . 1-15
Script to Run Bug Finder, Upload Results and Send Common
Notification . 1-20

Script to Run Bug Finder, Upload Results and Send Personalized
Notification . 1-22

Use Existing Software Development Specifications for
Polyspace Analysis

2
Create Polyspace Analysis Configuration from Build Command

. 2-2

polyspace-configure Source Files Selection Syntax 2-5

iii

Contents

Modularize Polyspace Analysis by Using Build Command 2-8
Build Source Code . 2-8
Create One Polyspace Options File for Full Build 2-10
Create Options File for Specific Binary in Build Command . . 2-11
Create One Options File Per Binary Created in Build Command

. 2-12

Offload Polyspace Analysis to Remote Servers from
Desktop

3
Send Polyspace Analysis from Desktop to Remote Servers . . . 3-2

Client-Server Workflow for Running Analysis 3-2
Prerequisites . 3-4
Offload Analysis in Polyspace User Interface 3-4

Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts . 3-7

Client-Server Workflow for Running Analysis 3-7
Prerequisites . 3-8
Run Remote Analysis . 3-8
Manage Remote Analysis . 3-10
Sample Scripts for Remote Analysis 3-12

Run Polyspace Analysis on Server with MATLAB
Scripts

4
Integrate Polyspace Server Products with MATLAB and

Simulink . 4-2
Integrate Polyspace with MATLAB Installation from Same

Release . 4-2
Integrate Polyspace with MATLAB Installation from Different

Release . 4-3
Check Integration Between MATLAB and Polyspace 4-3
Run Polyspace Server Products with MATLAB Scripts 4-4

iv Contents

Configure Target and Compiler Options
5

Specify Target Environment and Compiler Behavior 5-2
Extract Options from Build Command 5-3
Specify Options Explicitly . 5-4

C/C++ Language Standard Used in Polyspace Analysis 5-7
Supported Language Standards . 5-7
Default Language Standard . 5-7

C11 Language Elements Supported in Polyspace 5-10

C++11 Language Elements Supported in Polyspace 5-12

C++14 Language Elements Supported in Polyspace 5-15

Provide Standard Library Headers for Polyspace Analysis . . . 5-19

Requirements for Project Creation from Build Systems 5-21
Compiler Requirements . 5-21
Build Command Requirements . 5-22

Supported Keil or IAR Language Extensions 5-24
Special Function Register Data Type 5-24
Keywords Removed During Preprocessing 5-25

Remove or Replace Keywords Before Compilation 5-26
Remove Unrecognized Keywords . 5-26
Remove Unrecognized Function Attributes 5-28

Gather Compilation Options Efficiently 5-30

Configure Inputs and Stubbing Options
6

Specify External Constraints . 6-2
Create Constraint Template . 6-2

v

Create Constraint Template from Code Prover Analysis Results
. 6-4

Update Existing Template . 6-5
Specify Constraints in Code . 6-6

External Constraints for Polyspace Analysis 6-8
Constraint Specification Limitations 6-15

Constrain Global Variable Range . 6-17
User Interface (Desktop Products Only) 6-17
Command Line . 6-18

Constrain Function Inputs . 6-20
User Interface (Desktop Products Only) 6-20
Command Line . 6-21

XML File Format for Constraints . 6-23
Syntax Description — XML Elements 6-23
Valid Modes and Default Values . 6-28

Configure Multitasking Analysis
7

Analyze Multitasking Programs in Polyspace 7-2
Configure Analysis . 7-3
Review Analysis Results . 7-4

Auto-Detection of Thread Creation and Critical Section in
Polyspace . 7-6

Multitasking Routines that Polyspace Can Detect 7-6
Example of Automatic Thread Detection 7-8
Naming Convention for Automatically Detected Threads 7-12
Limitations of Automatic Thread Detection 7-13

Configuring Polyspace Multitasking Analysis Manually 7-19
Specify Options for Multitasking Analysis 7-19
Adapt Code for Code Prover Multitasking Analysis 7-20

Protections for Shared Variables in Multitasking Code 7-24
Detect Unprotected Access . 7-24

vi Contents

Protect Using Critical Sections . 7-25
Protect Using Temporally Exclusive Tasks 7-27
Protect Using Priorities . 7-27
Protect By Disabling Interrupts . 7-28

Define Atomic Operations in Multitasking Code 7-29
Nonatomic Operations . 7-29
What Polyspace Considers as Nonatomic 7-29
Define Specific Operations as Atomic 7-30

Define Preemptable Interrupts and Nonpreemptable Tasks . 7-33
Emulating Task Priorities . 7-33
Examples of Task Priorities . 7-33
Further Explorations . 7-35

Define Critical Sections with Functions That Take Arguments
. 7-36

Polyspace Assumption on Functions Defining Critical Sections
. 7-36

Adapt Polyspace Analysis to Lock and Unlock Functions with
Arguments . 7-37

Configure Coding Rules Checking and Code Metrics
Computation

8
Check for Coding Standard Violations . 8-2

Configure Coding Rules Checking . 8-2
Review Coding Rule Violations . 8-7
Generate Reports . 8-9

Avoid Violations of MISRA C 2012 Rules 8.x 8-10

Software Quality Objective Subsets (C:2004) 8-14
Rules in SQO-Subset1 . 8-14
Rules in SQO-Subset2 . 8-15

Software Quality Objective Subsets (AC AGC) 8-20
Rules in SQO-Subset1 . 8-20
Rules in SQO-Subset2 . 8-21

vii

Software Quality Objective Subsets (C:2012) 8-24
Guidelines in SQO-Subset1 . 8-24
Guidelines in SQO-Subset2 . 8-25

Software Quality Objective Subsets (C++) 8-29
SQO Subset 1 – Direct Impact on Selectivity 8-29
SQO Subset 2 – Indirect Impact on Selectivity 8-31

Coding Rule Subsets Checked Early in Analysis 8-36
MISRA C: 2004 and MISRA AC AGC Rules 8-36
MISRA C: 2012 Rules . 8-46

Create Custom Coding Rules . 8-56
User Interface (Desktop Products Only) 8-56
Command Line . 8-57

Compute Code Complexity Metrics . 8-59
Impose Limits on Metrics (Desktop Products Only) 8-59
Impose Limits on Metrics (Server and Access products) 8-61

HIS Code Complexity Metrics . 8-62
Project . 8-62
File . 8-62
Function . 8-62

Configure Bug Finder Checkers
9

Choose Specific Bug Finder Defect Checkers 9-2
User Interface (Desktop Products Only) 9-2
Command Line . 9-2

Short Names of Bug Finder Defect Checkers 9-4

Bug Finder Defect Groups . 9-21
Concurrency . 9-21
Cryptography . 9-22
Data flow . 9-22
Dynamic Memory . 9-23
Good Practice . 9-23

viii Contents

Numerical . 9-23
Object Oriented . 9-24
Programming . 9-24
Resource Management . 9-24
Static Memory . 9-25
Security . 9-25
Tainted data . 9-25

Polyspace Bug Finder Defects Checkers Enabled by Default
. 9-27

Bug Finder Results Found in Fast Analysis Mode 9-33
Polyspace Bug Finder Defects . 9-33
MISRA C: 2004 and MISRA AC AGC Rules 9-37
MISRA C: 2012 Rules . 9-45
MISRA C++ 2008 Rules . 9-53

CWE Coding Standard and Polyspace Results 9-66
CWE and Polyspace Bug Finder . 9-66
Find CWE IDs from Polyspace Results 9-66
Mapping Between CWE Identifiers and Polyspace Results . . . 9-67

Mapping Between CWE-658 or 659 and Polyspace Results 9-100
CWE-658: Weaknesses in Software Written in C 9-100
CWE-659: Weaknesses in Software Written in C++ 9-109

Configure Comment Import from Previous Results
10

Import Comments from Previous Polyspace Analysis 10-2
Automatic Comment Import from Last Analysis 10-2
Import Comments from Another Analysis Result 10-3
Comment Import Algorithm . 10-3
View Imported Comments That Do Not Apply 10-4

Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results . 10-6

Mapping Multiple MISRA C: 2004 Annotations to the Same
MISRA C: 2012 Result . 10-7

ix

Troubleshooting in Polyspace Bug Finder Server
11

License Error –4,0 . 11-3
Issue . 11-3
Possible Cause: Another Polyspace Instance Running 11-3
Possible Cause: Prior Polyspace Run in Simulink or MATLAB

Coder . 11-3

Read Error Information When Polyspace Analysis Stops 11-4

Contact Technical Support . 11-5
Provide System Information . 11-5
Provide Information About the Issue 11-5

Compiler Not Supported for Project Creation from Build
Systems . 11-8

Issue . 11-8
Cause . 11-8
Solution . 11-8

Slow Build Process When Polyspace Traces the Build 11-18
Issue . 11-18
Cause . 11-18
Solution . 11-18

Check if Polyspace Supports Build Scripts 11-19
Issue . 11-19
Possible Cause . 11-19
Solution . 11-19

Troubleshooting Project Creation from MinGW Build 11-21
Issue . 11-21
Cause . 11-21
Solution . 11-21

Troubleshooting Project Creation from Visual Studio Build
. 11-22

Cannot Create Project from Visual Studio Build 11-22
Compilation Error After Creating Project from Visual Studio

Build . 11-22

x Contents

Error Processing Macro with Semicolon in Build System . . 11-24
Issue . 11-24
Cause . 11-24
Solution . 11-24

Polyspace Cannot Find the Server . 11-25
Message . 11-25
Possible Cause . 11-25
Solution . 11-25

Job Manager Cannot Write to Database 11-26
Message . 11-26
Possible Cause . 11-26
Workaround . 11-26

Undefined Identifier Error . 11-28
Issue . 11-28
Possible Cause: Missing Files . 11-28
Possible Cause: Unrecognized Keyword 11-28
Possible Cause: Declaration Embedded in #ifdef Statements

. 11-29
Possible Cause: Project Created from Non-Debug Build . . . 11-30

Unknown Function Prototype Error . 11-32
Issue . 11-32
Cause . 11-32
Solution . 11-32

Error Related to #error Directive . 11-34
Issue . 11-34
Cause . 11-34
Solution . 11-34

Large Object Error . 11-36
Issue . 11-36
Cause . 11-36
Solution . 11-36

Errors Related to Generic Compiler 11-39
Issue . 11-39
Cause . 11-39
Solution . 11-39

xi

Errors Related to Keil or IAR Compiler 11-41
Missing Identifiers . 11-41

Errors Related to Diab Compiler . 11-42
Issue . 11-42
Cause . 11-42
Solution . 11-42

Errors Related to Green Hills Compiler 11-45
Issue . 11-45
Cause . 11-45
Solution . 11-46

Errors Related to TASKING Compiler 11-47
Issue . 11-47
Cause . 11-47
Solution . 11-48

Errors from Conflicts with Polyspace Header Files 11-49
Issue . 11-49
Cause . 11-49
Solution . 11-49

Errors from Assertion or Memory Allocation Functions . . . 11-51
Issue . 11-51
Cause . 11-51
Solution . 11-51

Error from Special Characters . 11-52
Issue . 11-52
Cause . 11-52
Workaround . 11-52

Errors from In-Class Initialization (C++) 11-53

Errors from Double Declarations of Standard Template Library
Functions (C++) . 11-54

Errors Related to GNU Compiler . 11-55
Issue . 11-55
Cause . 11-55
Solution . 11-55

xii Contents

Errors Related to Visual Compilers . 11-56
Import Folder . 11-56
pragma Pack . 11-56
C++/CLI . 11-57

Error or Slow Runs from Disk Defragmentation and Anti-virus
Software . 11-58

Issue . 11-58
Possible Cause . 11-58
Solution . 11-58

SQLite I/O Error . 11-60
Issue . 11-60
Cause . 11-60
Solution . 11-60

xiii

Polyspace Analysis on Server After
Code Submission

1

Prepare Scripts for Polyspace Analysis
When you run Polyspace as part of your software development processes, your analysis
scripts must be preconfigured for new code submissions. For instance, new source files
must be automatically included in the Polyspace analysis. To keep the analysis
configuration updated with new submissions, you can leverage existing artifacts such as
your build command (makefiles) and create your analysis configuration on the fly when
new submissions occur.

The analysis configuration consists of two parts:

• Options related to the source code and target, such as data type sizes, macro
definitions, cyclic tasks and interrupts, and so on.

• Options related to the analysis, such as checkers, code verification assumptions, and
so on.

1 Polyspace Analysis on Server After Code Submission

1-2

Options Related to Source Code and Target
The most common options related to the source code and target are:

• -sources-list-file: Specify a text file containing one source file per line.
• -I: Specify the folders containing included header files.
• Compiler (-compiler): Specify the compiler used for building your source code.
• Target processor type (-target): Specify sizes of data types and endianness

by selecting a predefined target processor.
• Preprocessor definitions (-D): Replace unrecognized code for the purposes of

Polyspace analysis. You typically use this option if the analysis shows compilation
errors from compiler-specific keywords and macros.

• Constraint setup (-data-range-specifications): Define external
constraints on global variables and function interfaces. The option is typically useful
for a more precise Code Prover analysis.

For the full list of options, see:

• “Analysis Options”
• “Analysis Options” (Polyspace Code Prover Server)

Extract Options from Build Command

In a continuous integration workflow, you typically do not specify the option arguments
explicitly. Your build command contains the specifications for sources, compiler, macro
definitions and so on. Run the polyspace-configure command to extract these
specifications from your build command and create an options file. For instance, if you
use make to build your source code, run the analysis as follows:

polyspace-configure -output-options-file polyspace_opts make
polyspace-bug-finder-server -options-file polyspace_opts
polyspace-code-prover-server -options-file polyspace_opts

The first command extracts source and target specifications by executing the instructions
in the makefile and creates an analysis options file. The second and third commands runs
a Bug Finder and Code Prover analysis with the options file. See “Create Polyspace
Analysis Configuration from Build Command” on page 2-2.

 Prepare Scripts for Polyspace Analysis

1-3

Specify Options Explicitly in Options File

If you cannot extract the options from your build command, specify the options explicitly.
You can create some of the option arguments on the fly from new submissions. For
instance, the argument for the option -sources-list-file is a text file that lists the
sources. You can update this text file based on any new source file added to the source
code repository.

If you have to specify the target and compiler options explicitly, you might not get all the
options right in the first run. To find the right combination of options:

1 Specify the options Compiler (-compiler) and Target processor type (-
target) in your options file.

2 Compile the code with your compiler and fix all compilation errors. Then, run only the
compilation part of the Polyspace analysis.

• In Bug Finder, disable all checkers. Specify -checkers none in the options file.
See Find defects (-checkers).

• In Code Prover, stop the analysis after compilation. Specify -to compile in the
options file. See Verification level (-to).

If you run into compilation errors, you might have to work around the errors with
Polyspace options. For instance, if you see a compilation error because the macro
_WIN32 is defined with a compiler option but Polyspace considers the macro as
undefined by default, emulate your compiler option with the Polyspace option -D
_WIN32. See “Target and Compiler”, “Macros” and “Environment Settings” for the
target and compiler options.

Once you fix all compilation errors with Polyspace analysis options, your options file is
prepared with the right set of Polyspace options for the analysis.

If you have an installation of the desktop products, Polyspace Bug Finder and/or
Polyspace Code Prover™, you can perform the trial runs in the user interface of the
desktop products. You can then generate an options file from the configuration defined in
the user interface. The user interface provides various features such as:

• Compilation assistant that suggests workarounds for some compilation errors,
• Auto-generation of XML file for constraint specification,

1 Polyspace Analysis on Server After Code Submission

1-4

• Context-sensitive help for options,

See “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on
page 1-7.

Options Related to Polyspace Analysis
Some options related to the Polyspace analysis are:

Bug Finder

• Find defects (-checkers): Specify checkers to enable for the Bug Finder
analysis.

• Check MISRA C:2012 (-misra3) and other options related to external standards:
Specify an external standard and a predefined subset of that standard.

• Set checkers by file (-checkers-selection-file): Specify a custom
subset of rules from external standards.

• Bug Finder and Code Prover report (-report-template): Specify that a
PDF, Word or HTML report must be generated along with the analysis results and
specify a template for the report.

Code Prover

• Overflow mode for signed integer (-signed-integer-overflows):
Specify the behavior following an overflow: stop analysis or continue with wrap-
around.

• Detect stack pointer dereference outside scope (-detect-pointer-
escape): Specify if the analysis must find cases where a function returns a pointer to
one of its local variables.

• Detect uncalled functions (-uncalled-function-checks): Specify if the
analysis must flag functions that are not called directly or indirectly from main or
another entry point function.

• Bug Finder and Code Prover report (-report-template): Specify that a
PDF, Word or HTML report must be generated along with the analysis results and
specify a template for the report.

The checkers and other options related to the Polyspace analysis can be applicable to
more than one project. To maintain uniform standards across projects, you can reuse this

 Prepare Scripts for Polyspace Analysis

1-5

subset of analysis options. When running the analysis, specify two options files, one
containing the options specific to the current project and the other containing the
reusable options. You can extract the first options file from your build command but
explicitly create the second options file.

For instance, in this example, the polyspace-bug-finder-server command uses two
options files: compile_opts generated from a makefile and runbf_opts created
manually. All reusable options can be specified in runbf_opts.

polyspace-configure -output-options-file compile_opts make
polyspace-bug-finder-server -options-file compile_opts -option-file runbf_opts
polyspace-code-prover-server -options-file compile_opts -option-file runcp_opts

If the same option appears in two options files, the last instance of the option is
considered. In the preceding example, if an option occurs in both compile_opts and
runbf_opts, the occurrence in runbf_opts is considered. If you want to override
previous occurrences of an option, use an additional options file with your overrides.
Append this options file to the end of the analysis command.

See Also
polyspace-bug-finder-server | polyspace-configure

More About
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2
• “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on

page 1-7

1 Polyspace Analysis on Server After Code Submission

1-6

Configure Polyspace Analysis Options in User Interface
and Generate Scripts

In this section...
“Prerequisites” on page 1-9
“Generate Scripts from Configuration” on page 1-9
“Run Analysis with Generated Scripts” on page 1-10

If you have an installation of the desktop products, Polyspace Bug Finder and/or
Polyspace Code Prover, you can configure your project in the user interface of the
desktop products. You can then generate a script or an options file from the configuration
defined in the user interface and use the script or options file for automated runs with the
desktop or server products.

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

1-7

Unless you create a Polyspace project from existing specifications such as a build
command, when setting up the project, you might have to perform a few trial runs first. In
these trial runs, if you run into compilation errors or unchecked code, you might have to
modify your analysis configuration. It is easier performing this initial setup in the user
interface of the desktop products. The user interface provides various features such as:

• Compilation assistant that suggests workarounds for some compilation errors,
• Auto-generation of XML file for constraint specification,
• Context-sensitive help for options.

1 Polyspace Analysis on Server After Code Submission

1-8

Prerequisites
You must have at least one license of Polyspace Bug Finder and/or Polyspace Code Prover
to open the Polyspace user interface and configure the options.

After generating the scripts, you can run the analysis using either the desktop products
(Polyspace Bug Finder and Polyspace Code Prover) or the server products (Polyspace Bug
Finder Server and/or Polyspace Code Prover Server).

Generate Scripts from Configuration
This example shows how to generate a script from a Bug Finder configuration. The same
steps apply to a Code Prover configuration.

1 Add source files to a new project in the Polyspace user interface.

Navigate to polyspaceroot\polyspace\bin, where polyspaceroot is the
Polyspace installation folder, for instance, C:\Program Files\Polyspace
\R2019a. Open the Polyspace user interface using the polyspace executable and
create a new project.

See “Add Source Files for Analysis in Polyspace User Interface” (Polyspace Bug
Finder).

2 Specify the analysis options on the Configuration pane in the Polyspace project. To
open this pane, in the project browser, click the configuration node in your Polyspace
project.

See “Specify Polyspace Analysis Options” (Polyspace Bug Finder).
3 Run the analysis. Based on compilation errors and analysis results, modify options as

needed.

See “Run Polyspace Analysis on Desktop” (Polyspace Bug Finder).
4 Once your analysis options are set, generate a script from the project (.psprj file).

To generate a script from the demo project, Bug_Finder_Example:

a Load the project. Select Help > Examples > Bug_Finder_Example.psprj. A
copy of this project is loaded in the Examples folder in your default workspace.

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

1-9

To find the project location, place your cursor on the project name in the Project
Browser pane.

b Navigate to the project location and enter:

polyspace -generate-launching-script-for Bug_Finder_Example.psprj -bug-finder

To generate Code Prover scripts, use the same command without the -bug-
finder option.

These files are generated for scripting the analysis:

• source_command.txt: Lists source files. This file can be provided as argument to the
-sources-list-file option.

• options_command.txt: Lists analysis options. This file can be provided as argument
to the -options-file option.

• launchingCommand.bat or launchingCommand.sh, depending on your operating
system. The file uses the polyspace-bug-finder or polyspace-code-prover
executable to run the analysis. The analysis runs on the source files listed in
source_command.txt and uses the options listed in options_command.txt.

Run Analysis with Generated Scripts
After configuring your analysis and generating scripts, you can use the generated files to
automate the subsequent analysis. You can automate the subsequent analysis using either
the desktop or server products.

To automate a Bug Finder analysis with the desktop product, Polyspace Bug Finder:

1 Generate scripts as mentioned in the previous section.
2 Execute the script launchingCommand.bat or launchingCommand.sh at periodic

intervals or based on predefined triggers.

To automate a Bug Finder analysis with the server product, Polyspace Bug Finder Server:

1 After specifying options in the user interface and before generating scripts, move the
Polyspace project (.psprj file) to the server where the server product is running.

2 Generate scripts as mentioned in the previous section.

The scripts refer to the server product executable instead of the desktop products.

1 Polyspace Analysis on Server After Code Submission

1-10

3 Execute the script launchingCommand.bat or launchingCommand.sh at periodic
intervals or based on predefined triggers.

Alternatively, you can modify the script generated for the desktop product so that the
server product is executed. The script refers to the path to a desktop product executable,
for instance:

"C:\Program Files\Polyspace\R2019a\polyspace\bin\polyspace-code-prover.exe"

Replace this with the path to a server product executable, for instance:

"C:\Program Files\Polyspace Server\R2019a\polyspace\bin\
 polyspace-code-prover-server.exe"

Sometimes, you might want to override some of the options in the options file. For
instance, the option to specify a results folder is hardcoded in the script. You can remove
this option or override it when launching the scripts:

launchingCommand -results-dir newResultsFolder

where newResultsFolder is the new results folder. This folder can even be dynamically
generated for each run.

If you override multiple options in options_command.txt, you can save the overrides in
a second options file. Modify the script launchingCommand.bat or
launchingCommand.sh so that both options files are used. The script uses the option -
options-file to use an options file, for instance:

-options-file options_command.txt

If you place your option overrides in a second options file overrides.txt, modify the
script to append a second -options-file option:

-options-file options_command.txt -options-file overrides.txt

See Also
-generate-launching-script-for

 See Also

1-11

Related Examples
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Prepare Scripts for Polyspace Analysis” on page 1-2

1 Polyspace Analysis on Server After Code Submission

1-12

Sample Scripts for Polyspace Analysis with Jenkins
In a continuous integration process, developers submit code to a shared repository. An
automated build system using a tool such as Jenkins builds and tests each submission at
regular intervals or based on predefined triggers and integrates the code. You can run a
Polyspace analysis as part of this process.

This topic provides sample Shell scripts that run a Polyspace analysis using Polyspace
Bug Finder Server and upload the results for review in the Polyspace Access web
interface. The script also sends e-mail notifications to potential reviewers. Notified
reviewers can login to the Polyspace Access web interface (if they have a Polyspace Bug
Finder Access™ license) and review the results.

 Sample Scripts for Polyspace Analysis with Jenkins

1-13

Extending Sample Scripts to Your Development Process
The scripts are written for a specific development toolchain but can be easily extended to
the processes used in your project, team or organization.

In particular, the scripts:

• Run on Linux® only.

The scripts use some Linux-specific commands such as export. However, these
commands are not an integral part of the Polyspace workflow. If you write Windows®

scripts (.bat files), use the equivalent Windows commands instead.
• Work only with Jenkins after you install the Polyspace plugin.

The scripts are designed for the Jenkins plugin in these two ways:

• The scripts uses helper functions $ps_helper and $ps_helper_access for
simpler scripting. The helper functions export Polyspace results for e-mail
attachments and use command-line utilities to filter the results.

These helper functions are available only with the Jenkins plugin. However, the
underlying commands come with a Polyspace Bug Finder Server installation. On
build automation tools other than Jenkins, you can create these helper functions
using the polyspace-report-generator command or polyspace-access
command (with the -export option). See “Send E-mail Notifications with
Polyspace Bug Finder Results”.

• The scripts create text files for e-mail attachments and mail subjects and bodies for
personalized e-mails. If you install the Polyspace plugin in Jenkins, an extension of
an e-mail plugin is available for use in your Jenkins projects. The e-mail plugin
allows you to easily send the personalized e-mails with the previously created
subjects, bodies and attachments. Without the Polyspace plugin, you have to find
an alternative way to send the e-mails.

• Run a Bug Finder analysis.

The scripts run Bug Finder on the demo example Bug_Finder_Example. If you install
the product Polyspace Bug Finder Server, the folder containing the demo example is
polyspaceserverroot/polyspace/examples/cxx/Bug_Finder_Example. Here,
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

1 Polyspace Analysis on Server After Code Submission

1-14

You can easily adapt the script to run Code Prover. Replace polyspace-bug-
finder-server with polyspace-code-prover-server. You can use the demo
example Code_Prover_Example specifically meant for Code Prover.

Prerequisites
To run a Bug Finder analysis on a server and review the results in the Polyspace Access
web interface, you must perform a one-time setup.

• To run the analysis, you must install one instance of the Polyspace Bug Finder Server
product.

• To upload results, you must set up the components required to host the web interface
of Polyspace Access.

• To view the uploaded results, you (and each developer reviewing the results) must
have one Polyspace Bug Finder Access license.

See “Install Polyspace Server and Access Products”.

To install the Polyspace plugin, in the Jenkins interface, select Manage Jenkins on the
left. Select Manage Plugin. Search for the Polyspace plugin and then download and
install the plugin.

Set Up Polyspace Plugin in Jenkins
The following steps outline how to set up a Polyspace analysis in Jenkins after installing
the Polyspace plugin. Note that the steps refer to Jenkins version 2.150.1. The steps in
your Jenkins version and your Polyspace plugin installation might be slightly different.

If you use a different build automation tool, you can perform similar setup steps.

Specify Paths to Polyspace Commands and Server Details for Polyspace Access
Web Interface

Specify the full paths of the folder containing the Polyspace commands and host name
and port number of the server hosting the Polyspace Access web interface. After you

 Sample Scripts for Polyspace Analysis with Jenkins

1-15

specify the paths, in your scripts, you do not have to use the full paths to the commands
or the server details for uploading results.

1 In the Jenkins interface, select Manage Jenkins on the left. Select Configure
System.

2 In the Polyspace section, specify the following:

• Paths to Polyspace commands.

The path refers to polyspaceserverroot/polyspace/bin, where
polyspaceserverroot is the installation folder for Polyspace Server products,
for instance, /usr/local/Polyspace Server/R2019a/.

• The host name, port number and protocol (http or https) used by the server
hosting the Polyspace Access web interface.

1 Polyspace Analysis on Server After Code Submission

1-16

The Name field allows you to define a convenient shorthand that you use later in
Jenkins projects.

3 In the E-mail Notification section, specify your company's SMTP server (and other
details needed for sending e-mails).

 Sample Scripts for Polyspace Analysis with Jenkins

1-17

Create Jenkins Project for Running Polyspace

When you create a Jenkins project (for instance, a Freestyle project), you can refer to the
Polyspace paths by the global shorthands that you defined earlier.

To create a Jenkins project for running Polyspace:

1 In the Jenkins interface, select New Item on the left. Select Freestyle Project.
2 In the Build Environment section of the project, enter the two shorthand names you

defined earlier:

• The name for the path to the folder containing the Polyspace commands
• The name for the details of the server hosting the Polyspace Access web interface.

Also, enter a login and password that can be used to upload to the Polyspace Access
web interface. The login and password must be associated with a Polyspace Bug
Finder Access license.

1 Polyspace Analysis on Server After Code Submission

1-18

3 In the Build section of the project, you can enter scripts that use the Polyspace
commands and details of the server hosting the Polyspace Access web interface.

 Sample Scripts for Polyspace Analysis with Jenkins

1-19

The scripts run a Polyspace analysis and upload results to the Polyspace Access web
interface.

4 In the Post-build Actions section of the project, configure e-mail addresses and
attachments to be sent after the analysis.

Script to Run Bug Finder, Upload Results and Send Common
Notification
This script runs a Bug Finder analysis, uploads the results and exports defects with high
impact for a common notification email to all recipients.

The script assumes that the current folder contains a folder sources with .c files.
Otherwise modify the line gcc -c sources/*.c with the full path to the sources.

1 Polyspace Analysis on Server After Code Submission

1-20

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export PARENT_PROJECT=/public/BugFinderExample_PRS_01

==
Trace build command and create an options file

build_cmd="gcc -c sources/*.c"
polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

==
Run Bug Finder on the options file

polyspace-bug-finder-server -options-file $PROG.psopts -results-dir $RESULT

==
Upload results to Polyspace Access web interface

$ps_helper_access -create-project $PARENT_PROJECT
$ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG

==
Export results filtered for defects with "High" impact

$ps_helper_access \
 -export $PARENT_PROJECT/$PROG \
 -output Results_All.tsv \
 -defects High

==
Finalize Jenkins status

exit 0

 Sample Scripts for Polyspace Analysis with Jenkins

1-21

After the script is run, you can create a post-build action to send an e-mail to all
recipients with the exported file Results_All.tsv.

In this script, $ps_helper_access is a shorthand for the polyspace-access
command with the options specifying host name, port, login and encrypted password
included. The other polyspace-access options are explicitly written in the script.

Script to Run Bug Finder, Upload Results and Send
Personalized Notification
This script runs the previous Bug Finder analysis and uploads the results. However, the
script differs from the previous script in these ways:

• The script uses a run_command function that prints a message when running a
command. The function helps determine from the console output which part of the
script is running.

1 Polyspace Analysis on Server After Code Submission

1-22

• When exporting the results, the script creates a separate results file for different
owners.

• A master file Results_All.tsv contains all results. This file is sent in e-mail
attachment to a manager. The manager email is configured in the post-build step.

If the file contains more than 10 defects, the build status is considered as a failure.
The script sends a status UNSTABLE in the e-mail notification.

• The results file Results_Users_userA.tsv exported for userA contains defects
from the group Programming and with impact High.

This result file is sent in e-mail attachment to userA.
• The results file Results_Users_userB.tsv exported for userB contains defects

from the function bug_memstdlib().

This result file is sent in e-mail attachment to userB.
• A separate mail subject is created for the manager in the file

mailsubject_manager.txt and for users userA and userB in the files
mailsubject_user_userA.txt and mailsubject_user_userB.txt respectively.

A mail body is created for the email to the manager in the file
mailbody_manager.txt.

The script:

• Assumes that the current folder contains a folder sources with .c files.

Otherwise, modify the line gcc -c sources/*.c with the full path to the sources.
• Assumes users named userA and userB. In particular, the email addresses

userA@companyname.com and userB@companyname.com (determined from the
user name and SMTP server configured earlier) must be real e-mail addresses.

Replace the names with real user names.

 Sample Scripts for Polyspace Analysis with Jenkins

1-23

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export REPORT=Results_List.tsv

==
Define function to print message while running command
run_command()
{
$1 is a message
$2 $3 ... is the command to dump and to run
message=$1
shift
cat >> mailbody_manager.txt << EOF
$(date): $message

EOF
"$@"
}

==
Initialize mail body
cat > mailbody_manager.txt << EOF
Dear Manager(s)

Here is the report of the Jenkins Job ${JOB_NAME} #${BUILD_NUMBER}
It contains all Red Defect found in Bug Finder Example project

EOF

==
Trace build command and create options file

build_cmd="gcc -c sources/*.c"
run_command "Tracing build command", \
 polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

1 Polyspace Analysis on Server After Code Submission

1-24

==
Run Bug Finder on the options file

run_command "Running Bug finder" \
 polyspace-bug-finder-server -options-file $PROG.psopts\
 -results-dir $RESULT

==
Upload results to Polyspace Access web interface

run_command "Creating Project $PARENT_PROJECT" \
 $ps_helper_access -create-project $PARENT_PROJECT

run_command "Uploading on $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG \
 -output upload.output
PROJECT_RUNID=$($ps_helper prs_print_runid upload.output)
PROJECT_URL=$($ps_helper prs_print_projecturl upload.output $POLYSPACE_ACCESS_URL)

==
Export report

run_command "Exporting report from $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -export $PROJECT_RUNID \
 -output $REPORT \
 -defects High

==
Filter Reports

run_command "Filtering reports for defects" \
 $ps_helper report_filter \
 $REPORT \
 Results_All.tsv \
 Family Defect \

 Sample Scripts for Polyspace Analysis with Jenkins

1-25

==
Filter Reports for userA and userB

run_command "Filtering Reports for userA based on Group and Information" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"
run_command "Filtering Reports for userB based on Function" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userB \
 Function "bug_memstdlib()"

==
Update Jenkins status
Jenkins build status is unstable when there are more than 10 Defects

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10)

==
Update mail body and mail subject

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)
NB_FINDINGS_USERA=$($ps_helper report_count_findings Results_Users_userA.tsv)
NB_FINDINGS_USERB=$($ps_helper report_count_findings Results_Users_userB.tsv)
cat >> mailbody_manager.txt << EOF

Number of defects: $NB_FINDINGS_ALL
Number of findings owned by userA: $NB_FINDINGS_USERA
Number of findings owned by userB: $NB_FINDINGS_USERB

All results are uploaded in: $PROJECT_URL

Build Status: $BUILD_STATUS

EOF

cat >> mailsubject_manager.txt << EOF
Polyspace run completed with status $BUILD_STATUS and $NB_FINDINGS_ALL findings

1 Polyspace Analysis on Server After Code Submission

1-26

EOF

for user in userA userB
do
echo "$user - $($ps_helper report_count_findings Results_Users_$user.tsv)) findings"\
 > mailsubject_user_$user.txt
done

==
Exit with correct build status

["$BUILD_STATUS" != "SUCCESS"] && exit 129
exit 0

After the script is run, you can create a post-build action to send an e-mail to a manager
with the exported file Results_All.tsv. Specify the e-mail address in the Recipients
field, the email subject in the Mail Subject field and the email body in the Mail Body
field.

In addition, a separate e-mail is sent to userA and userB with the files
Results_Users_userA.tsv and Results_Users_userB.tsv in attachment (and the
content of mailsubject_user_userA.txt and mailsubject_user_userB.txt as
mail subjects). The e-mail addresses are userA@companyname.com and
userB@companyname.com (determined from the user name and SMTP server configured
earlier).

 Sample Scripts for Polyspace Analysis with Jenkins

1-27

The script uses the helper function $ps_helper to filter the results based on group,
impact and function. The helper function uses command-line utilities to filter the master
file for results and perform actions such as create a separate results file for each owner.
The function takes these actions as arguments:

• report_filter: Filters results from exported text file based on contents of the text
file.

For instance:

1 Polyspace Analysis on Server After Code Submission

1-28

$ps_helper report_filter \
 Results_List.tsv \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"

reads the file Results_List.tsv and writes to the file
Results_Users_userA.tsv. The text file Results_List.tsv contains columns for
Group and Information. Only those rows where the Group column contains
Programming and the Information column contains Impact: High are written to
the file Results_Users_userA.tsv.

• report_status: Returns UNSTABLE or SUCCESS based on the number of results in a
file.

For instance:

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10))

returns UNSTABLE if the file Results_All.tsv contains more than 10 results (10
rows).

• report_count_findings: Reports number of results in a file.

For instance:

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)

returns the number of results (rows) in the file Results_All.tsv.
• prs_print_projecturl: Uses the host name and port number to create the URL of

the Polyspace Access web interface.

For instance:

PROJECT_URL=$($ps_helper prs_print_projecturl Results_All.tsv $POLYSPACE_ACCESS_URL)

reads the file Results_All.tsv (exported by the polyspace-access command)
and extracts the URL of the Polyspace Access web interface in
$POLYSPACE_ACCESS_URL and the URL of the current project in $PROJECT_URL.

 Sample Scripts for Polyspace Analysis with Jenkins

1-29

See Also
polyspace-access | polyspace-bug-finder-server | polyspace-code-prover-
server | polyspace-configure | polyspace-report-generator

More About
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Send E-mail Notifications with Polyspace Bug Finder Results”

1 Polyspace Analysis on Server After Code Submission

1-30

Use Existing Software Development
Specifications for Polyspace
Analysis

• “Create Polyspace Analysis Configuration from Build Command” on page 2-2
• “polyspace-configure Source Files Selection Syntax” on page 2-5
• “Modularize Polyspace Analysis by Using Build Command” on page 2-8

2

Create Polyspace Analysis Configuration from Build
Command

To run Polyspace on a server during continuous integration, you must configure all
analysis options beforehand so that the analysis completes without errors. These options
must be updated as necessary to keep up with new code submissions. If you use existing
artifacts such as a build command (makefile) to build new code submissions, you can
reuse the build command to configure a Polyspace analysis and stay updated with new
submissions. With the polyspace-configure command, you can monitor the execution
of a build command and create an options file for analysis with Polyspace.

This topic shows a simple tutorial illustrating how to create an options file from a build
command and use the file for the subsequent analysis. The topic uses a Linux makefile
and the GCC compiler, but you can adapt the commands to other operating systems such
as Windows and other compilers such as Microsoft® Visual Studio®.

1 Cope the demo source files from polyspaceserverroot\polyspace\examples
\cxx\Bug_Finder_Example\sources to a folder with write permissions. Here,
polyspaceserverroot is the root installation folder of the Polyspace server
products, for instance, C:\Program Files\Polyspace Server\R2019a.

2 Create a simple makefile that compiles the demo source files. Save the makefile in
the same folder as the source files.

For instance, create a file named makefile and add this content:

CC := gcc
SOURCES := $(wildcard *.c)

all: $(CC) -c $(SOURCES)

Check that the makefile builds the source files successfully. Open a command
terminal, navigate to the folder (using cd) and enter:

make

The make command should complete execution without errors.
3 Trace the build command with polyspace-configure and create an options file

compile_opts.

2 Use Existing Software Development Specifications for Polyspace Analysis

2-2

polyspace-configure -output-options-file compile_opts make

4 Create a second options file with additional options. For instance, create a file
run_opts with this content:

-checkers numerical
-report-template BugFinder
-output-format pdf

The options run all numerical checkers in Bug Finder and creates a PDF report after
analysis using the BugFinder template.

5 Run a Bug Finder analysis with the two options files: compile_opts created from
your build command and run_opts created manually.

polyspace-bug-finder-server -options-file compile_opts -options-file run_opts

The analysis should complete without errors. You can open the results in the
Polyspace user interface or upload the results to the Polyspace Access web interface
(using the polyspace-access command).

To run Code Prover instead of Bug Finder, use the polyspace-code-prover-
server command instead of the polyspace-bug-finder-server command.

You can run a similar analysis using MATLAB scripts. Replace polyspace-bug-finder-
server with the function polyspaceBugFinderServer and polyspace-configure
with the function polyspaceConfigure.

See Also
polyspace-bug-finder-server | polyspace-configure

See Also

More About
• “Prepare Scripts for Polyspace Analysis” on page 1-2
• “Specify Target Environment and Compiler Behavior” on page 5-2
• “polyspace-configure Source Files Selection Syntax” on page 2-5

 See Also

2-3

• “Modularize Polyspace Analysis by Using Build Command” on page 2-8

2 Use Existing Software Development Specifications for Polyspace Analysis

2-4

polyspace-configure Source Files Selection Syntax
When you create projects by using polyspace-configure, you can include or exclude
source files whose paths match the pattern that you pass to the options -include-
sources or -exclude-sources. You can specify these two options multiple times and
combine them at the command line.

This folder structure applies to these examples.

To try these examples, use the demo files in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\sources-select. polyspaceroot is
the Polyspace installation folder.

Run this command:

polyspace-configure -allow-overwrite -include-sources "glob_pattern" \
-print-excluded-sources -print-included-sources make -B

glob_pattern is the glob pattern that you use to match the paths of the files you want
to include or exclude from your project. To ensure the shell does not expand the glob
patterns you pass to polyspace-configure, enclose them in double quotes.

In the table, the examples assume that sources is a top-level folder.

 polyspace-configure Source Files Selection Syntax

2-5

Glob Pattern Syntax Example
No special characters, slashes ('/'), or
backslashes ('\').

Pattern matches corresponding files, but
not folders.

-include-sources "main.c" matches:

/sources/app/main.c

Pattern contains '*' or '?' special
characters.

'*' matches zero or more characters in file
or folder name.

'?' matches one character in file or folder
name.

The matches do not include path
separators.

-include-sources "b?.c" matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c

-include-sources "app/*.c" matches:

/sources/app/main.c

Pattern starts with slash '/' (UNIX®) or
drive letter (Windows).

Pattern matches absolute path only.

-include-sources "/a" does not match
anything.

-include-sources "/sources/app"
matches:

/sources/app/main.c
Pattern ends with a slash (UNIX), backslash
(Windows), or '**'.

Pattern matches all files under specified
folder.

'**' is ignored if it is at the start of the
pattern.

-include-sources "a/" matches

/sources/lib/a/a1.c

/sources/lib/a/a2.c

Pattern contains '/**/' (UNIX) or '**\'
(Windows). Pattern matches zero or more
folders in the specified path.

-include-sources "lib/**/?1.c"
matches:

/sources/lib/a/a1.c

/sources/lib/b/b1.c

2 Use Existing Software Development Specifications for Polyspace Analysis

2-6

Glob Pattern Syntax Example
Pattern starts with '.' or '..'.

Pattern matches paths relative to the path
where you run the command.

If you start polyspace-configure from /
sources/lib/a,

-include-sources "../lib/**/b?.c"
matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c
Pattern is a UNC path on Windows . If your files are on server myServer:

\\myServer\sources\lib\b**
matches:

\\myServer\sources\lib\b\b1.c

\\myServer\sources\lib\b\b2.c

polyspace-configure does not support these glob patterns:

• Absolute paths relative to the current drive on Windows.

For instance, \foo\bar.
• Relative paths to the current folder.

For instance, C:foo\bar.
• Extended length paths in Windows.

For instance, \\?\foo.
• Paths that contain '.' or '..' except at the start of the pattern.

For instance, /foo/bar/../a?.c.
• The '*' character by itself.

 polyspace-configure Source Files Selection Syntax

2-7

Modularize Polyspace Analysis by Using Build Command
To configure the Polyspace analysis, you can reuse the compilation options in your build
command such as make. First, you trace your build command with polyspace-
configure (or polyspaceConfigure in MATLAB®) and create a Polyspace options file.
You later specify this options file for the subsequent Polyspace analysis.

If your build command creates several binaries, by default polyspace-configure
groups the source files for all binaries into one Polyspace options file. If binaries that use
the same source files or functions are compiled with different options, you lose this
distinction in the subsequent Polyspace analysis. The presence of the same function
multiple times can lead to link errors during the Polyspace analysis and sometimes to
incorrect results.

This topic shows how to create a separate Polyspace options file for each binary created
in your makefile. Suppose that a makefile creates four binaries: two executable (target
cmd1 and cmd2) and two shared libraries (target liba and libb). You can create a
separate Polyspace options file for each of these binaries.

To try this example, use the files in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\multiple_modules. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a or C:\Program Files\Polyspace Server\R2019a.

Build Source Code
Inspect the makefile. The makefile creates four binaries:

2 Use Existing Software Development Specifications for Polyspace Analysis

2-8

CC := gcc
LD := ld

LIBA_SOURCES := $(wildcard src/liba/*.c)
LIBB_SOURCES := $(wildcard src/libb/*.c)
CMD1_SOURCES := $(wildcard src/cmd1/*.c)
CMD2_SOURCES := $(wildcard src/cmd2/*.c)
LIBA_OBJ := $(notdir $(LIBA_SOURCES:.c=.o))
LIBB_OBJ := $(notdir $(LIBB_SOURCES:.c=.o))
CMD1_OBJ := $(notdir $(CMD1_SOURCES:.c=.o))
CMD2_OBJ := $(notdir $(CMD2_SOURCES:.c=.o))
LIBB_SOBJ := libb.so
LIBA_SOBJ := liba.so

all: cmd1 cmd2

cmd1: liba libb
 $(CC) -o $@ $(CMD1_SOURCES) $(LIBA_SOBJ) $(LIBB_SOBJ)

cmd2: libb
 $(CC) -c $(CMD2_SOURCES)
 $(LD) -o $@ $(CMD2_OBJ) $(LIBB_SOBJ)

liba: libb
 $(CC) -fPIC -c $(LIBA_SOURCES)
 $(CC) -shared -o $(LIBA_SOBJ) $(LIBA_OBJ)

libb:
 $(CC) -fPIC -c $(LIBB_SOURCES)
 $(CC) -shared -o $(LIBB_SOBJ) $(LIBB_OBJ)

.PHONY: clean
clean:
 rm *.o

The binaries created have the dependencies shown in this figure. For instance, creation of
the object cmd1.o depends on all .c files in the folder cmd1 and the shared objects
liba.so and libb.so.

 Modularize Polyspace Analysis by Using Build Command

2-9

Build your source code by using the makefile. Use the -B flag to ensure full build.

make -B

Make sure that the build runs to completion.

Create One Polyspace Options File for Full Build
Trace the build command by using polyspace-configure. Use the option -output-
options-file to create a Polyspace options file psoptions from the build command.

polyspace-configure -output-options-file psoptions make -B

2 Use Existing Software Development Specifications for Polyspace Analysis

2-10

Run Bug Finder or Code Prover by using the previously created options file: Save the
analysis results in a results subfolder.

polyspace-bug-finder-server -options-file psoptions -results-dir results

You see this link error (warning in Bug Finder):

Procedure 'main' multiply defined.

The error occurs because the files cmd1/cmd1_main.c and cmd2/cmd2_main.c both
have a main function. When you run your build command, the two files are used in
separate targets in the makefile. However, polyspace-configure by default creates
one options file for the full build. The Polyspace options file contains both source files
resulting in conflicting definitions of the main function.

To verify the cause of the error, open the Polyspace options file psoptions. You see these
lines that include the files with conflicting definitions of the main function.

-sources src/cmd1/cmd1_main.c
-sources src/cmd2/cmd2_main.c

Create Options File for Specific Binary in Build Command
To avoid the link error, build the source code for a specific binary when tracing your build
command by using polyspace-configure.

For instance, build your source code for the binary cmd1.o. Specify the makefile target
cmd1 for make, which creates this binary.

polyspace-configure -output-options-file psoptions make -B cmd1

Run Bug Finder or Code Prover by using the previously created options file.

polyspace-bug-finder-server -options-file psoptions -results-dir results

The link error does not occur and the analysis runs to completion. You can open the
Polyspace options file psoptions and see that only the source files in the cmd1 subfolder
and the files involved in creating the shared objects are included with the -sources

 Modularize Polyspace Analysis by Using Build Command

2-11

option. The source files in the cmd2 subfolder, which are not involved in creating the
binary cmd1.o, are not included in the Polyspace options file.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do
not contain a main function. In the subsequent Code Prover analysis, you can see an error
because of the missing main.

Use the Polyspace option Verify module or library (-main-generator) to
generate a main function. Specify the option in the options file that was created or
directly at the command line. See “Verify C Application Without main Function”
(Polyspace Code Prover Server).

In C++, use these additional options for classes:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

Create One Options File Per Binary Created in Build Command
To create an options file for a specific binary created in the build command, you must
know the details of your build command. If you are not familiar with the internal details of
the build command, you can create a separate Polyspace options file for every binary
created in the build command. The approach works for binaries that are executables,
shared (dynamic) libraries and static libraries.

This approach works only if you use these compilers:

• GNU C or GNU C++
• Microsoft Visual C++

Trace the build command by using polyspace-configure.To create a separate options
file for each binary, use the option -module with polyspace-configure.

polyspace-configure -module -output-options-path optionsFilesFolder make -B

2 Use Existing Software Development Specifications for Polyspace Analysis

2-12

The command creates options files in the folder optionsFilesFolder. In the preceding
example, the command creates four options files for the four binaries:

• cmd1.psopts
• cmd2.psopts
• liba_so.psopts
• libb_so.psopts

You can run Polyspace on the code implementation of a specific binary by using the
corresponding options file. For instance, you can run Code Prover on the code
implementation of the binary created from the makefile target cmd1 by using this
command:

polyspace-bug-finder-server -options-file cmd1.psopts -results-dir results

For this approach, you do not need to know the details of your build command. However,
when you create a separate options file for each binary in this way, each options file
contains source files directly involved in the binary and not through shared objects. For
instance, the options file cmd1.psopts in this example specifies only the source files in
the cmd1 subfolder and not the source files involved in creating the shared objects
liba.so and libb.so. The subsequent analysis by using this options file cannot access
functions from the shared objects and uses function stubs instead. In the Code Prover
analysis, if you see too many orange checks due to the stubbing, use the approach stated
in the section “Create Options File for Specific Binary in Build Command” on page 2-11.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do
not contain a main function. In the subsequent Code Prover analysis, you can see an error
because of the missing main.

Use the Polyspace option Verify module or library (-main-generator) to
generate a main function. Specify the option in the options file that was created or
directly at the command line. See “Verify C Application Without main Function”
(Polyspace Code Prover Server).

In C++, use these additional options for classes:

 Modularize Polyspace Analysis by Using Build Command

2-13

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

See Also
polyspace-bug-finder-server | polyspace-configure

More About
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2

2 Use Existing Software Development Specifications for Polyspace Analysis

2-14

Offload Polyspace Analysis to
Remote Servers from Desktop

• “Send Polyspace Analysis from Desktop to Remote Servers” on page 3-2
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

on page 3-7

3

Send Polyspace Analysis from Desktop to Remote
Servers

In this section...
“Client-Server Workflow for Running Analysis” on page 3-2
“Prerequisites” on page 3-4
“Offload Analysis in Polyspace User Interface” on page 3-4

You can perform a Polyspace analysis locally on your desktop or offload the analysis to
one or more dedicated servers. You offload a Polyspace analysis from a Polyspace desktop
product such as Polyspace Bug Finder but the analysis runs on the server using a
Polyspace server product such as Polyspace Bug Finder Server.

This topic shows how to send a Polyspace analysis from the user interface of the
Polyspace desktop products.

• To offload an analysis with scripts, see “Send Polyspace Analysis from Desktop to
Remote Servers Using Scripts” on page 3-7.

• For a simple tutorial that walks through all the steps for offloading a Polyspace
analysis, see “Send Bug Finder Analysis from Desktop to Locally Hosted Server”. In
the tutorial, the same computer acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a
server. The client-server workflow happens in three steps. All three steps can be
performed on the same computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the
client desktop. The initial phase of analysis upto compilation runs on the desktop.
After compilation, the analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer
that acts as the client node.

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-2

2 Head node: The server consists of a head node and several worker nodes. The head
node uses a job scheduler to manage submissions from multiple client desktops. The
jobs are then distributed to the worker nodes as they become available.

You require the product MATLAB Parallel Server™ on the computer that acts as the
head node.

3 Worker nodes: When a worker becomes available, the job scheduler assigns the
analysis to the worker. The Polyspace analysis runs on the worker and the results are
downloaded back to the client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker
nodes. You also require the Polyspace server products, Polyspace Bug Finder Server
and/or Polyspace Code Prover Server, to run the analysis.

 Send Polyspace Analysis from Desktop to Remote Servers

3-3

Prerequisites
Before offloading an analysis from the user interface of the Polyspace desktop products,
you must set up your project’s source files, analysis options, and remote analysis settings.
If you have not done so, for more information on:

• How to add source files, see “Add Source Files for Analysis in Polyspace User
Interface” (Polyspace Bug Finder).

• How to set up communication between client and server, see “Install Products for
Submitting Polyspace Analysis from Desktops to Remote Server”.

Once you have set up a Polyspace project and established communicated between a
desktop and a remote server, you are ready to offload a Polyspace analysis.

Offload Analysis in Polyspace User Interface
To start a remote analysis:

1 Select a project to analyze.
2 On the Configuration pane, select Run Settings.

Select Run Bug Finder analysis on a remote cluster and/or Run Code Prover
analysis on a remote cluster.

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-4

3 If you want to store your results in the Polyspace Metrics repository, select Upload
results to Polyspace Metrics.

Otherwise, clear this check box. After analysis, the results are downloaded to the
desktop for review.

4 Start the analysis. For instance, to start a Bug Finder analysis, click the Run Bug
Finder button.

The compilation part of the analysis takes place on the desktop product. After
compilation, the analysis is offloaded to the server.

5 To monitor the analysis, select Tools > Open Job Monitor. In the Polyspace Job
Monitor, follow your queued job to monitor progress.

Once the analysis is complete, the results are downloaded back to the user interface
of the Polyspacedesktop products. You can open the results directly in the user
interface. If you uploaded the results to Polyspace Metrics, you have to explicitly
download them from the Polyspace Metrics interface.

 Send Polyspace Analysis from Desktop to Remote Servers

3-5

If the analysis stops after compilation and you have to restart the analysis, to avoid
restarting from the compilation phase, use the option -submit-job-from-
previous-compilation-results.

Note If you choose to upload results to Polyspace Metrics, your results are not
downloaded automatically after verification. Use the Polyspace Metrics web dashboard to
view the results and download them to your desktop. For more information, see “View
Projects in Polyspace Metrics” (Polyspace Bug Finder).

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote

Server”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 3-

7

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-6

Send Polyspace Analysis from Desktop to Remote
Servers Using Scripts

Instead of running a Polyspace analysis on your local desktop, you can send the analysis
to a remote cluster. You can use a dedicated cluster for running Polyspace to free up
memory on your local desktop.

This topic shows how to use Windows or Linux scripts to send the analysis to a remote
cluster and download the results to your desktop after analysis.

• To offload an analysis from the Polyspace user interface, see “Send Polyspace Analysis
from Desktop to Remote Servers” on page 3-2.

• For a simple tutorial that walks through all the steps for offloading a Polyspace
analysis, see “Send Bug Finder Analysis from Desktop to Locally Hosted Server”. In
the tutorial, the same computer acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a
server. The client-server workflow happens in three steps. All three steps can be
performed on the same computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the
client desktop. The initial phase of analysis upto compilation runs on the desktop.
After compilation, the analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer
that acts as the client node.

2 Head node: The server consists of a head node and several worker nodes. The head
node uses a job scheduler to manage submissions from multiple client desktops. The
jobs are then distributed to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the
head node.

3 Worker nodes: When a worker becomes available, the job scheduler assigns the
analysis to the worker. The Polyspace analysis runs on the worker and the results are
downloaded back to the client desktop for review.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-7

You require the product MATLAB Parallel Server on the computers that act as worker
nodes. You also require the Polyspace server products, Polyspace Bug Finder Server
and/or Polyspace Code Prover Server to run the analysis.

Prerequisites
Before you run a remote analysis by using scripts, you must set up communication
between a desktop and a remote server. See “Install Products for Submitting Polyspace
Analysis from Desktops to Remote Server”.

Run Remote Analysis
To run a remote analysis, use this command:

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-8

polyspaceroot\polyspace\bin\polyspace-bug-finder
-batch -scheduler NodeHost | MJSName@NodeHost [options]

where:

• polyspaceroot is the installation folder of Polyspace desktop products, for instance,
C:\Program Files\Polyspace\R2019a.

• NodeHost is the name of the computer that hosts the head node of the MATLAB
Parallel Server cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

If you set up communications with a cluster from the Polyspace user interface, you can
determine NodeHost and MJSName from the user interface. Select Metrics > Metrics
and Remote Server Settings. Open the MATLAB Parallel Server Admin Center.
Under MATLAB Job Scheduler, see the Name and Hostname columns for MJSName
and NodeHost.

If you use the startjobmanager command to start the MATLAB Job Scheduler,
MJSName is the argument of the option -name. For details, see “Configure Advanced
Options for MATLAB Job Scheduler Integration” (MATLAB Parallel Server).

• options are the analysis options. These options are the same as that of a local
analysis. For instance, you can use these options:

• -sources-list-file: Specify a text file with one source file name per line.
• -options-file: Specify a text file with one option per line.
• -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Analysis Options”. Alternatively, you can:

• Start an analysis in the user interface and stop after compilation. You can obtain
the text files and scripts for running the analysis at the command line. See
“Configure Polyspace Analysis Options in User Interface and Generate Scripts” on
page 1-7.

• Enter polyspace-bug-finder -h. The list of available options with a brief
description are displayed.

• Place your cursor over each option on the Configuration pane in the Polyspace
user interface. Click the More Help button for information on the option syntax
and when the option is required.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-9

The analysis executes locally on your desktop up to the end of the compilation phase.
After compilation, the software submits the analysis job to the cluster and provides a job
ID. You can also read the ID from the file ID.txt in the results folder. To monitor your
analysis, use the polyspace-jobs-manager command with the job ID.

If the analysis stops after compilation and you have to restart the analysis, to avoid
rerunning the compilation phase, use the option -submit-job-from-previous-
compilation-results.

Manage Remote Analysis
To manage multiple remote analyses, use the option -batch. For instance:

polyspaceroot\polyspace\bin\polyspace-jobs-manager action
 -scheduler schedulerName

See also Run Bug Finder or Code Prover analysis on a remote cluster (-
batch). Here:

• polyspaceroot is your MATLAB installation folder.
• schedulerName is one of the following:

• Name of the computer that hosts the head node of your MATLAB Parallel Server
cluster (NodeHost).

• Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Discover Clusters and Use Cluster
Profiles” (Parallel Computing Toolbox)

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace preferences. To see the scheduler name, select Tools >
Preferences. On the Server Configuration tab, see the Job scheduler host name.

• action refers to the possible action commands to manage jobs on the scheduler:

• listjobs:

Generate a list of Polyspace jobs on the scheduler. For each job, the software
produces this information:

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-10

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted job.
• APPLICATION — Name of Polyspace product, for example, Polyspace Code

Prover or Polyspace Bug Finder.
• LOCAL_RESULTS_DIR — Results folder on local computer, specified through the

Tools > Preferences > Server Configuration tab.
• WORKER — Local computer from which job was submitted.
• STATUS — Status of job, for example, running and completed.
• DATE — Date on which job was submitted.
• LANG — Language of submitted source code.

• download -job ID -results-folder FolderPath:

Download results of analysis with specified ID to folder specified by FolderPath.

When the analysis job is queued on the server, the command polyspace-bug-
finder returns a job id. In addition, a file ID.txt in the results folder contains the
job ID in this format:

job_id;server_name:project_name version_number

For instance, 92;localhost:Demo 1.0.

If you do not use the -results-folder option, the software downloads the result
to the folder that you specified when starting analysis, using the -results-dir
option.

After downloading results, use the Polyspace user interface to view the results.
• getlog -job ID:

Open log for job with specified ID.
• remove -job ID:

Remove job with specified ID.
• promote -job ID:

Promote job with specified ID in the queue.
• demote -job ID

Demote job with specified ID in the queue.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-11

Sample Scripts for Remote Analysis
In Windows, to avoid typing the commands each time, you can save the commands in a
batch file. In Linux, you can relaunch the analysis by using a shell script. To create a
batch file for running analysis:

1 Save your analysis options in a file listofoptions.txt. See -options-file.
2 Create a file launcher.bat in a text editor like Notepad.

In the file, enter these commands:

echo off
set POLYSPACE_PATH=polyspaceroot\polyspace\bin
set RESULTS_PATH=C:\Results
set OPTIONS_FILE=C:\Options\listofoptions.txt
"%POLYSPACE_PATH%\polyspace-bug-finder.exe" -batch -scheduler localhost
 -results-dir "%RESULTS_PATH%" -options-file "%OPTIONS_FILE%"
pause

polyspaceroot is the Polyspace installation folder. localhost is the name of the
computer that hosts the head node of your MATLAB Parallel Server cluster.

3 Replace the definitions of these variables in the file:

• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during compilation

are saved in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.

4 Double-click launcher.bat to run the analysis.

Tip If you run a Polyspace analysis, a Windows .bat or Linux .sh file is generated. The
file is in the .settings subfolder in your results folder. Instead of writing a script from
scratch, you can relaunch the analysis using this file.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-12

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote

Server”
• “Send Polyspace Analysis from Desktop to Remote Servers” on page 3-2

 See Also

3-13

Run Polyspace Analysis on Server
with MATLAB Scripts

4

Integrate Polyspace Server Products with MATLAB and
Simulink

You can install Polyspace Bug Finder Server and Polyspace Code Prover Server as
standalone products and analyze C/C++ code. However, if you have an installation of
MATLAB, you can run the Polyspace analysis with MATLAB scripts.

If you install Polyspace server products and MATLAB, you have to run the MATLAB
installer twice and install Polyspace in a different root folder from the other products. For
instance, in Windows:

• Your default MATLAB root folder is C:\Program Files\MATLAB\R2019a.
• Your default Polyspace root folder is C:\Program Files\Polyspace Server

\R2019a for the Polyspace server products.

To run Polyspace from within MATLAB, Simulink or MATLAB Coder™, you have to
perform a post-installation step to link your MATLAB and Polyspace installations.

Integrate Polyspace with MATLAB Installation from Same
Release
If your Polyspace and MATLAB installations belong to the same release, you can use all
MATLAB functions and classes available for running Polyspace.

To link your MATLAB and Polyspace installations:

1 Open MATLAB with administrator privileges.
2 Navigate to polyspaceserverroot\toolbox\polyspace\pscore\pscore\.

Here, polyspaceserverroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace Server\R2019a.

3 At the MATLAB command prompt, enter:

polyspacesetup('install')

You see a prompt stating that the workspace will be cleared. Click Yes to continue the
linking. The process might take a few minutes to complete.

4 Run Polyspace Analysis on Server with MATLAB Scripts

4-2

4 Restart MATLAB. You can now use all functions and classes available for running
Polyspace server products.

A MATLAB installation can be linked with only one Polyspace installation. To link to a new
Polyspace installation, any previous links must be removed. To remove a link between a
Polyspace and MATLAB installation, repeat the same steps as before with one difference:
At the MATLAB command prompt, enter:

polyspacesetup('uninstall')

Integrate Polyspace with MATLAB Installation from Different
Release
If you upgrade your Polyspace server product installation but not your MATLAB
installation, you can link your MATLAB installation with the later release of the Polyspace
server product.

Remove the existing link between your Polyspace and MATLAB installation as described
in the previous section. Then, in your post-installation step, navigate to
polyspaceserverroot\toolbox\polyspace\pscore\pscore\, where
polyspaceroot is the installation folder for the later release of Polyspace Bug Finder
Server and/or Polyspace Code Prover Server. At the MATLAB command prompt, enter:

polyspacesetup('install')

If you integrate MATLAB with a later release of Polyspace, you cannot use all functions
and classes available to run the analysis. In particular, you cannot use the
polyspace.Project class. Instead, use the polyspaceCodeProverServer function to
run Code Prover and the polyspaceBugFinderServer function to run Bug Finder on
handwritten code.

Check Integration Between MATLAB and Polyspace
To check if a MATLAB installation is already linked to a Polyspace installation, open
MATLAB and enter a Polyspace-specific command, for instance:

obj = polyspace.Project

 Integrate Polyspace Server Products with MATLAB and Simulink

4-3

The command will display an error if the MATLAB installation is not linked to a Polyspace
installation.

Run Polyspace Server Products with MATLAB Scripts
In a continuous integration process, you can execute MATLAB scripts that run a
Polyspace analysis on new code submissions and compares the results against predefined
criteria. Use these functions/classes:

• Create a polyspace.Project object to configure Polyspace analysis options, run an
analysis and read results to MATLAB tables. You can use other MATLAB functions for
comparing results against predefined criteria.

To only read existing results without running an analysis, use the
polyspace.BugFinderResults or polyspace.CodeProverResults class with
the path to a results folder.

• If you want a more granular selection of checkers for:

• Coding rules, create a polyspace.CodingRulesOptions object.
• Bug Finder defects, create a polyspace.DefectsOptions object.

To create a custom target for the analysis and explicitly specify sizes of data types,
create a polyspace.GenericTargetOptions object.

You can also use the polyspaceBugFinderServer or polyspaceCodeProverServer
function to run the analysis and then read results with the
polyspace.BugFinderResults or polyspace.CodeProverResults class. If you use
build commands to build your source code, you can create a Polyspace configuration from
the build command using the polyspaceConfigure function.

4 Run Polyspace Analysis on Server with MATLAB Scripts

4-4

Configure Target and Compiler
Options

5

Specify Target Environment and Compiler Behavior
Before verification, specify your source code language (C or C++), target processor, and
the compiler that you use for building your code. In certain cases, to emulate your
compiler behavior, you might have to specify additional options.

Using your specification, the verification determines the sizes of fundamental types,
considers certain macros as defined, and interprets compiler-specific extensions of the
Standard. If the options do not correspond to your run-time environment, you can
encounter:

• Compilation errors
• Verification results that might not apply to your target

If you use a build command such as gmake to build your code and the build command
meets certain restrictions, you can extract the options from the build command.
Otherwise, specify the options explicitly.

5 Configure Target and Compiler Options

5-2

Extract Options from Build Command
If you use build automation scripts to build your source code, you can set up a Polyspace
project from your scripts. The options associated with your compiler are specified in that
project.

In the Polyspace desktop products, for information on how to trace your build command
from the:

• Polyspace user interface, see “Add Source Files for Analysis in Polyspace User
Interface” (Polyspace Bug Finder).

• DOS or UNIX command line, see polyspace-configure.
• MATLAB command line, see polyspaceConfigure.

In the Polyspace server products, for information on how to trace your build command,
see “Create Polyspace Analysis Configuration from Build Command” on page 2-2.

 Specify Target Environment and Compiler Behavior

5-3

For Polyspace project creation, your build automation script (makefile) must meet certain
requirements. See “Requirements for Project Creation from Build Systems” on page 5-
21.

Specify Options Explicitly
If you cannot trace your build command and therefore manually create a project, you
have to specify the options explicitly.

• In the user interface of the Polyspace desktop products, select a project configuration.
On the Configuration pane, select Target & Compiler. Specify the options.

• At the DOS or UNIX command line, specify flags with the polyspace-bug-finder,
polyspace-code-prover, polyspace-bug-finder-server or polyspace-
code-prover-server command.

• At the MATLAB command line, specify arguments with the polyspaceBugFinder,
polyspaceCodeProver, polyspaceBugFinderServer or
polyspaceCodeProverServer function.

Specify the options in this order.

• Required options:

• Source code language (-lang): If all files have the same extension .c
or .cpp, the verification uses the extension to determine the source code language.
Otherwise, explicitly specify the option.

• Compiler (-compiler): Select the compiler that you use for building your
source code. If you cannot find your compiler, use an option that closely matches
your compiler.

• Target processor type (-target): Specify the target processor on which
you intend to execute your code. For some processors, you can change the default
specifications. For instance, for the processor hc08, you can change the size of
types double and long double from 32 to 64 bits.

If you cannot find your target processor, you can create your own target and
specify the sizes of fundamental types, default signedness of char, and endianness
of the target machine. See Generic target options.

• Language-specific options:

• C standard version (-c-version): The default C language standard depends
on your compiler specification. If you do not specify a compiler explicitly, the

5 Configure Target and Compiler Options

5-4

default analysis uses the C99 standard. Specify an earlier standard such as C90 or
a later standard such as C11.

• C++ standard version (-cpp-version): The default C++ language standard
depends on your compiler specification. If you do not specify a compiler explicitly,
the default analysis uses the C++03 standard. Specify later standards such as C+
+11 or C++14.

• Compiler-specific options:

Whether these options are available or not depends on your specification for
Compiler (-compiler). For instance, if you select a visual compiler, the option
Pack alignment value (-pack-alignment-value) is available. Using the
option, you emulate the compiler option /Zp that you use in Visual Studio.

For all compiler-specific options, see “Target and Compiler”.
• Advanced options:

Using these options, you can modify the verification results. For instance, if you use
the option Division round down (-div-round-down), the verification considers
that quotients from division or modulus of negative numbers are rounded down. Use
these options only if you use similar options when compiling your code.

For all advanced options, see “Target and Compiler”.
• Compiler header files:

If you specify the diab, tasking or greenhills compiler, you must specify the path
to your compiler header files. See “Provide Standard Library Headers for Polyspace
Analysis” on page 5-19.

If you still see compilation errors after running analysis, you might have to specify other
options:

• Define macros: Sometimes, a compilation error occurs because the analysis considers
a macro as undefined. Explicitly define these macros. See Preprocessor
definitions (-D).

• Specify include files: Sometimes, a compilation error occurs because your compiler
defines standard library functions differently from Polyspace and you do not provide
your compiler include files. Explicitly specify the path to your compiler include files.
See “Provide Standard Library Headers for Polyspace Analysis” on page 5-19.

 Specify Target Environment and Compiler Behavior

5-5

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) |
Compiler (-compiler) | Preprocessor definitions (-D) | Source code
language (-lang) | Target processor type (-target)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7
• “Provide Standard Library Headers for Polyspace Analysis” on page 5-19

5 Configure Target and Compiler Options

5-6

C/C++ Language Standard Used in Polyspace Analysis
The Polyspace analysis adheres to a specific language standard for code compilation. The
language standard, along with your compiler specification, defines the language elements
that you can use in your code. For instance, if the Polyspace analysis uses the C99
standard, C11 features such as use of the thread support library from threads.h causes
compilation errors.

Supported Language Standards
The Polyspace analysis supports these standards:

• C: C90, C99, C11

The default standard depends on your compiler specification. If you do not specify a
compiler explicitly, the default analysis uses the C99 standard. To change the language
standard, use the option C standard version (-c-version).

• C++: C++03, C++11, C++14

The default standard depends on your compiler specification. If you do not specify a
compiler explicitly, the default analysis uses the C++03 standard. To change the
language standard, use the option C++ standard version (-cpp-version).

Default Language Standard
The default language standard depends on your specification for the option Compiler (-
compiler).

Compiler C Standard C++ Standard
generic C99 C++03
gnu3.4, gnu4.6, gnu4.7,
gnu4.8, gnu4.9

C99 C++03

gnu5.x C11 C++03
gnu6.x C11 C++14
gnu7.x C11 C++14

 C/C++ Language Standard Used in Polyspace Analysis

5-7

Compiler C Standard C++ Standard
clang3.x C99 C++03

The analysis accepts some C
++11 extensions.

clang4.x C99 C++03

The analysis accepts C++14
extensions.

clang5.x C99 C++03

The analysis accepts C++14
extensions.

visual9.0, visual10.0,
visual11.0, visual12.0

C99 C++03

visual14.0 C99 C++14
visual15.x C99 C++14
iar C99 C++03
armcc C99 C++03
armclang C11 C++03
keil C99 C++03
diab C99 C++03
tasking C99 C++03
greenhills C99 C++03
codewarrior C99 C++03
ti C99 C++03
iar-ew C99 C++03
renesas C99 C++03

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) |
Compiler (-compiler)

5 Configure Target and Compiler Options

5-8

More About
• “C11 Language Elements Supported in Polyspace” on page 5-10
• “C++11 Language Elements Supported in Polyspace” on page 5-12
• “C++14 Language Elements Supported in Polyspace” on page 5-15

 See Also

5-9

C11 Language Elements Supported in Polyspace
This table provides a partial list of C language elements that have been introduced since
C11 and the corresponding Polyspace support. If your code contains non-supported
constructions, Polyspace reports a compilation error.

C11 Language Element Supported
alignas and alignof convenience
macros

Yes

aligned_alloc function Yes
noreturn convenience macros Yes
Generic selection Yes
Thread support library (threads.h) Yes
Atomic operations library (stdatomic.h) Yes
Atomic types with _Atomic Yes.

If you use the Clang compiler, see
limitations book for limitations on atomic
data types. See “Limitations of Polyspace
Verification” (Polyspace Code Prover).

UTF-16 and UTF-32 character utilities Yes
Bound-checking interfaces or alternative
versions of standard library functions that
check for buffer overflows (Annex K of C11)

For instance, strcpy_s is an alternative to
strcpy that checks for certain errors in
the string copy.

No.

Polyspace checks for certain run-time
errors in use of standard library functions.
The checking does not extend to these
alternatives.

Anonymous structures and unions Yes
Static assert declaration Yes

5 Configure Target and Compiler Options

5-10

C11 Language Element Supported
Features related to error handling such as
errno_t and rsize_t typedef-s

No.

If you see compilation errors from use of
these typedef-s, explicitly specify the path
to your compiler headers. See “Provide
Standard Library Headers for Polyspace
Analysis” on page 5-19.

quick_exit and at_quick_exit Yes.

In Bug Finder, functions registered with
at_quick_exit appear as uncalled.

CMPLX, CMPLXF and CMPLXL macros Yes

See Also
C standard version (-c-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7

 See Also

5-11

C++11 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced
since C++11 and the corresponding Polyspace support. If your code contains non-
supported constructions, Polyspace reports a compilation error.

C++11 Std Ref Description Supported
C++2011-DR226 Default template arguments for function templates Yes
C++2011-DR339 Solving the SFINAE problem for expressions Yes
C++2011-N1610 Initialization of class objects by rvalues Yes
C++2011-N1653 C99 preprocessor Yes
C++2011-N1720 Static assertions Yes
C++2011-N1737 Multi-declarator auto Yes
C++2011-N1757 Right angle brackets Yes
C++2011-N1791 Extended friend declarations No
C++2011-N1811 long long Yes
C++2011-N1984 auto-typed variables Yes
C++2011-N1986 Delegating constructors Yes
C++2011-N1987 Extern templates Yes
C++2011-N1988 Extended integral types Yes
C++2011-N2118 Rvalue references Yes
C++2011-N2170 Universal character name literals Yes
C++2011-N2179 Concurrency: Propagating exceptions No
C++2011-N2235 Generalized constant expressions Yes

C++2011-N2239 Concurrency: Sequence points
No new syntax/keyword is introduced and therefore does
not affect Polyspace support for C++11.

C++2011-N2242 Variadic templates Yes
C++2011-N2249 New character types Yes
C++2011-N2253 Extending sizeof Yes
C++2011-N2258 Template aliases Yes
C++2011-N2340 __func__ predefined identifier Yes

5 Configure Target and Compiler Options

5-12

C++11 Std Ref Description Supported
C++2011-N2341 Alignment support Yes
C++2011-N2342 Standard Layout Types Yes
C++2011-N2343 Declared type of an expression Yes
C++2011-N2346 Defaulted and deleted functions Yes
C++2011-N2347 Strongly typed enums Yes
C++2011-N2427 Concurrency: Atomic operations No

C++2011-N2429 Concurrency: Memory model
No new syntax/keyword is introduced and therefore does
not affect Polyspace support for C++11.

C++2011-N2431 Null pointer constant Yes
C++2011-N2437 Explicit conversion operators Yes
C++2011-N2439 Rvalue references for *this Yes
C++2011-N2440 Concurrency: Abandoning a process and at_quick_exit Yes
C++2011-N2442 Unicode string literals Yes
C++2011-N2442 Raw string literals Yes
C++2011-N2535 Inline namespaces Yes
C++2011-N2540 Inheriting constructors Yes
C++2011-N2541 New function declarator syntax Yes
C++2011-N2544 Unrestricted unions Yes
C++2011-N2546 Removal of auto as a storage-class specifier Yes
C++2011-N2547 Concurrency: Allow atomics use in signal handlers No
C++2011-N2555 Extending variadic template template parameters Yes
C++2011-N2657 Local and unnamed types as template arguments Yes
C++2011-N2659 Concurrency: Thread-local storage No

C++2011-N2660
Concurrency: Dynamic initialization and destruction with
concurrency Yes

C++2011-N2664
Concurrency: Data-dependency ordering: atomics and
memory model No

C++2011-N2672 Initializer lists Yes
C++2011-N2748 Concurrency: Strong Compare and Exchange No

 C++11 Language Elements Supported in Polyspace

5-13

C++11 Std Ref Description Supported
C++2011-N2752 Concurrency: Bidirectional Fences No
C++2011-N2756 Nonstatic data member initializers Yes
C++2011-N2761 Generalized attributes Yes
C++2011-N2764 Forward declarations for enums Yes
C++2011-N2765 User-defined literals Yes
C++2011-N2927 New wording for C++0x lambdas Yes
C++2011-N2928 Explicit virtual overrides Yes
C++2011-N2930 Range-based for Yes
C++2011-N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-N3053 Defining move special member functions Yes
C++2011-N3276 decltype and call expressions Yes

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7

5 Configure Target and Compiler Options

5-14

C++14 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced
since C++14 and the corresponding Polyspace support. If your code contains non-
supported constructions, Polyspace reports a compilation error.

C++14 Std Ref Description Supported

C++2014-N3323
Implicit conversion from class type in certain
contexts such as delete or switch statement.

This C++14 feature allows
implicit conversion from
class type in certain
contexts. No new syntax/
keyword is introduced and
therefore does not affect
Polyspace support for C+
+14.

C++2014-N3462 More SFINAE-friendly std::result_of Yes
C++2014-N3472 Binary literals, for instance, 0b100. Yes

C++2014-N3545
operator() in integral_constant template of
constexpr type Yes

C++2014-N3637
Relation between std::async and destructor of
std::future

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3638
Automatic deduction of return type for functions
where an explicit return type is not specified

Yes.

In some cases, Code Prover
can show compilation errors.

C++2014-N3642
Suffixes for user-defined literals indicating time (h,
min, s, ms, us, ns) and strings (s) Yes

C++2014-N3648
Initialization of captured members in lambda
functions

Yes.

In some cases, during
initialization, Code Prover
can call the corresponding
constructors more number
of times than necessary.

 C++14 Language Elements Supported in Polyspace

5-15

C++14 Std Ref Description Supported

C++2014-N3649

Generic (polymorphic) lambda expressions:

• Using auto type-specifier for parameter and
return type

• Conversion of generic capture-less lambda
expressions to pointer-to-function. Yes

C++2014-N3651 Variable templates Yes

C++2014-N3652
Declarations, conditions and loops in constexpr
functions. Yes

C++2014-N3653

Initialization of aggregate classes with fewer
initializers than members

For instance, this initialization has fewer initializers
than members. The member c is initialized with the
value 0 and d is initialized with the value s.
struct S {
 int a;
 const char* b;
 int c;
 int d = b[a];};
S ss = { 1, "asdf" }; Yes

C++2014-N3654 std::quoted Yes
C++2014-N3656 std::make_unique Yes
C++2014-N3658 std::integer_sequence Yes

C++2014-N3658 std::shared_lock

No.

The use of
std::shared_lock does
not cause compilation errors
but the construct is not
semantically supported.

5 Configure Target and Compiler Options

5-16

C++14 Std Ref Description Supported

C++2014-N3664 Calling new and delete operators in batches.

This C++14 feature clarifies
how successive calls to the
new operator are
implemented. No new
syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3668 std::exchange Partially supported.

C++2014-N3670

Using std::get with a data type to get one element
in an std::tuple (provided there is only one
element of the type in the tuple) Yes

C++2014-N3671

Overloads for std::equal, std::mismatch and
std::is_permutation function templates that
accept two separate ranges Yes

C++2014-N3733 Removal of std::gets from <cstdio> Yes

C++2014-N3776 Wording change for destructor of std::future

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3779
std::complex literals representing pure imaginary
numbers with suffix i, if or il Yes

C++2014-N3781
Use of single quotation mark as digit separator, for
instance, 1'000. Yes

C++2014-N3786 Prohibiting "out of thin air' results in C++14

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3910 Synchronizing behavior of signal handlers

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

 C++14 Language Elements Supported in Polyspace

5-17

C++14 Std Ref Description Supported

C++2014-N3924 Discouraging use of rand()

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3927 Lock-free executions

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7

5 Configure Target and Compiler Options

5-18

Provide Standard Library Headers for Polyspace
Analysis

Before Polyspace analyzes the code for bugs and run-time errors, it compiles your code.
Even if the code compiles with your compiler, you can see compilation errors with
Polyspace. If the error comes from a standard library function, it usually indicates that
Polyspace is not using your compiler headers. To work around the errors, provide the path
to your compiler headers.

This topic shows how to locate the standard library headers from your compiler. The code
examples cause a compilation error that shows the location of the headers.

• To locate the folder containing your C compiler system headers, compile this C code by
using your compilation toolchain:

float fopen(float f);
#include <stdio.h>

The code does not compile because the fopen declaration conflicts with the
declaration inside stdio.h. The compilation error shows the location of your compiler
implementation of stdio.h. Your C standard library headers are all likely to be in that
folder.

• To locate the folder containing your C++ compiler system headers, compile this C++
code by using your compilation toolchain:

namespace std {
 float cin;
}
#include <iostream>

The code does not compile because the cin declaration conflicts with the declaration
inside iostream.h. The compilation error shows the location of your compiler
implementation of iostream.h. Your C++ standard library headers are all likely to be
in that folder.

After you locate the path to your compiler's header files, specify the path for the
Polyspace analysis. For C++ code, specify the paths to both your C and C++ headers.

• In the user interface (Polyspace desktop products), add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Bug Finder).

 Provide Standard Library Headers for Polyspace Analysis

5-19

• At the command line, use the flag -I with the polyspace-bug-finder, polyspace-
code-prover, polyspace-bug-finder-server or polyspace-code-prover-
server command..

For more information, see -I.

See Also

More About
• “Errors from Conflicts with Polyspace Header Files” on page 11-49

5 Configure Target and Compiler Options

5-20

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles
must meet certain requirements.

Compiler Requirements
• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as
distmake, the software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to build
all your source files. For example, if you use gmake, append the -B or -W
makefileName option to force a clean build. For the list of options allowed with the
GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently
supported include the following:

• arm Keil
• Clang
• Wind River® Diab
• GNU C/C++
• IAR Embedded Workbench
• Green Hills®

• NXP CodeWarrior®

• Renesas®

• Altium® Tasking
• Texas Instruments™
• tcc - Tiny C Compiler
• Microsoft Visual C++®

If your compiler configuration is not available to Polyspace:

 Requirements for Project Creation from Build Systems

5-21

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

• Write a compiler configuration file for your compiler in a specific format. For more
information, see “Compiler Not Supported for Project Creation from Build
Systems” on page 11-8.

• Contact MathWorks Technical Support. For more information, see “Contact
Technical Support” on page 11-5.

• With the TASKING compiler, if you use an alternative sfr file with extension .asfr,
Polyspace might not be able to locate your file. If you encounter an error, explicitly
#include your .asfr file in the preprocessed code using the option Include (-
include).

Typically, you use the statement #include __SFRFILE__(__CPU__) along with the
compiler option --alternative-sfr-file to specify an alternative sfr file. The path
to the file is typically Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in
C:\Program Files\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag
-Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program Files
\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

Build Command Requirements
• Your build command must run to completion without any user interaction.
• In Linux, only UNIX shell (sh) commands must be used. If your build uses advanced

commands such as commands supported only by bash, tcsh or zsh, Polyspace cannot
trace your build.

In Windows, only DOS commands must be used. If your build uses advanced
commands such as commands supported only by PowerShell or Cygwin™, Polyspace
cannot trace your build. To see if Polyspace supports your build command, run the
command from cmd.exe in Windows. For more information, see “Check if Polyspace
Supports Build Scripts” on page 11-19.

• If you use statically linked libraries, Polyspace cannot trace your build. In Linux, you
can install the full Linux Standard Base (LSB) package to allow dynamic linking. For
example, on Debian® systems, install LSB with the command apt-get install lsb.

• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If
your build command uses those alternate names, Polyspace cannot recognize them.

• Your build process must not use the LD_PRELOAD mechanism.

5 Configure Target and Compiler Options

5-22

https://www.mathworks.com/support/?s_tid=gn_supp

• Your build command must be executable completely on the current machine and must
not require privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely log in to another
machine, Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection
occurs after Polyspace traces the command. Therefore, Polyspace does not handle the
redirection.

For example, if your command occurs as

command1 | command2

And you enter

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• If the System Integrity Protection (SIP) feature is active on the operating system

macOS El Capitan (10.11) or a later macOS version, Polyspace cannot trace your build
command. Before tracing your build command, disable the SIP feature. You can
reenable this feature after tracing the build command.

• If your computer hibernates during the build process, Polyspace might not be able to
trace your build.

Note Your environment variables are preserved when Polyspace traces your build
command.

See Also
polyspace-configure

Related Examples
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2

 See Also

5-23

Supported Keil or IAR Language Extensions
Polyspace analysis can interpret a subset of common C/C++ language constructs and
extended keywords by default. For compiler-specific keywords, you must specify your
choice of compiler. If you specify keil or iar for Compiler (-compiler), the
Polyspace verification allows language extensions specific to the Keil or IAR compilers.

Special Function Register Data Type
Embedded control applications frequently read and write port data, set timer registers,
and read input captures. To deal with these requirements without using assembly
language, some microprocessor compilers define special data types such as sfr and
sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

The declarations reside in header files such as regxx.h for the basic 80Cxxx micro
processor. The declarations customize the compiler to the target processor.

You access a register or a port by using the sfr and sbit data as follows. However, these
data types are not part of the C99 Standard.

int status,P0;

void main (void) {
 ADCUP = 0x08; /* Write data to register */
 A1 = 0xFF; /* Write data to Port */
 status = P0; /* Read data from Port */
 EI = 1; /* Set a bit (enable all interrupts) */
}

To analyze this type of code, use these options:

• Compiler (-compiler): Specify keil or iar.
• Sfr type support (-sfr-types): Specify the data type and size in bits.

The analysis then supports the Keil or IAR language extensions even if some structures,
keywords, and syntax are not part of the C99 standard.

5 Configure Target and Compiler Options

5-24

Keywords Removed During Preprocessing
Once you specify the Keil or IAR compiler, the analysis recognizes compiler-specific
keywords in your code. If a keyword is not relevant for the analysis, it is removed from
the source code during preprocessing.

If you disable the keyword and use it as an identifier instead, you can encounter a
compilation error when you compile your code with Polyspace. See “Errors Related to Keil
or IAR Compiler” on page 11-41.

These keywords are removed during preprocessing:

• Keil: bdata, far, idata, huge, sdata
• IAR: saddr, reentrant, reentrant_idata, non_banked, plm, bdata, idata,

pdata, code, xdata, xhuge, interrupt, __interrupt, __intrinsic

The data keyword is not removed.

 Supported Keil or IAR Language Extensions

5-25

Remove or Replace Keywords Before Compilation
The Polyspace compiler strictly follows the ANSI® C99 Standard (ISO/IEC 9899:1999). If
your compiler allows deviation from the Standard, the Polyspace compilation using
default options cannot emulate your compiler. For instance, your compiler can allow
certain non-ANSI keyword, which Polyspace does not recognize by default.

To emulate your compiler closely, you specify the “Target and Compiler” options. If you
still get compilation errors from unrecognized keywords, you can remove or replace them
only for the purposes of verification. The option Preprocessor definitions (-D)
allows you to make simple substitutions. For complex substitutions, for instance to
remove a group of space-separated keywords such as a function attribute, use the option
Command/script to apply to preprocessed files (-post-preprocessing-
command).

Remove Unrecognized Keywords
You can remove unsupported keywords from your code for the purposes of analysis. For
instance, follow these steps to remove the far and 0x keyword from your code (0x
precedes an absolute address).

1 Save the following template as C:\Polyspace\myTpl.pl.

Content of myTpl.pl

#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Windows: polyspaceroot\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

$INFILE = STDIN;

5 Configure Target and Compiler Options

5-26

$OUTFILE = STDOUT;

while (<$INFILE>)
{

 # Remove far keyword
 s/far//;

 # Remove "@ 0xFE1" address constructs
 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs
 s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs
 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # DON'T DELETE LINE BELOW: Print the current processed line
 print $OUTFILE $_;
}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions
###
Metacharacter What it matches
###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace

 Remove or Replace Keywords Before Compilation

5-27

#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurrence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

2 On the Configuration pane, select Environment Settings.
3

To the right of Command/script to apply to preprocessed files, click .
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply to

preprocessed files field.

Remove Unrecognized Function Attributes
You can remove unsupported function attributes from your code for the purposes of
analysis.

5 Configure Target and Compiler Options

5-28

If you run verification on this code specifying a generic compiler, you can see compilation
errors from the noreturn attribute. The code compiles using a GNU compiler.

void fatal () __attribute__ ((noreturn));

void fatal (/* ... */)
{
 /* ... */ /* Print error message. */ /* ... */
 exit (1);
}

If the software does not recognize an attribute and the attribute does not affect the code
analysis, you can remove it from your code for the purposes of verification. For instance,
you can use this Perl script to remove the noreturn attribute.

while ($line = <STDIN>)
{

__attribute__ ((noreturn))

 # Remove far keyword
 $line =~ s/__attribute__\ \(\(noreturn\)\)//g;

 # Print the current processed line to STDOUT
 print $line;
}

Specify the script using the option Command/script to apply to preprocessed
files (-post-preprocessing-command).

See Also
Polyspace Analysis Options
Command/script to apply to preprocessed files (-post-preprocessing-
command) | Preprocessor definitions (-D)

Related Examples
• “Troubleshoot Compilation Errors”

 See Also

5-29

Gather Compilation Options Efficiently
Polyspace verification can sometimes stop in the compilation or linking phase due to the
following reasons:

• The Polyspace compiler strictly follows a C or C++ Standard (depending on your
choice of compiler). See “C/C++ Language Standard Used in Polyspace Analysis” on
page 5-7. If your compiler allows deviation from the Standard, the Polyspace
compilation using default options cannot emulate your compiler.

• Your compiler declares standard library functions with argument or return types
different from the standard types. Unless you also provide the function definition, for
efficient verification, Polyspace uses its own definitions of standard library functions,
which have the usual prototype. The mismatch in types causes a linking error.

You can easily work around the compilation and standard library function errors. To work
around the errors, you typically specify certain analysis options. In some cases, you might
have to add a few lines to your code. For instance:

• To emulate your compiler behavior more closely, you specify the “Target and
Compiler” options. If you still face compilation errors, you might have to remove or
replace certain unrecognized keywords using the option Preprocessor
definitions (-D). However, the option allows only simple substitution of a string
with another string. For more complex replacements, you might have to add #define
statements to your code.

• To avoid errors from stubbing standard library functions, you might have to #define
certain Polyspace-specific macros so that Polyspace does not use its own definition of
standard library functions.

Instead of adding these modifications to your original code, create a single
polyspace.h file that contains all modifications. Use the option Include (-include)
to force inclusion of the polyspace.h file in all source files under verification.

Benefits of this approach include:

• The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

• There will be no need to modify original source files.
• The file is automatically included as the very first file in the original .c files.
• The file is reusable for other projects developed under the same environment.

5 Configure Target and Compiler Options

5-30

Example 5.1. Example

This is an example of a file that can be used with the option Include (-include).

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Workarounds for compilation errors
#define far
#define at(x)

// Workarounds for errors due to redefining standard library functions

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
 //automatic stubbing of std functions
#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

See Also

More About
• “Troubleshoot Compilation Errors”

 See Also

5-31

Configure Inputs and Stubbing
Options

6

Specify External Constraints
This example shows how to specify constraints (also known as data range specifications
or DRS) on variables in your code. Polyspace uses the code that you provide to make
assumptions about items such as variable ranges and allowed buffer size for pointers.
Sometimes the assumptions are broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions:

• Code Prover can consider more execution paths than those paths that occur at run
time. If an operation fails along one of the execution paths, Polyspace places an orange
check on the operation. If that execution path comes from an assumption that is too
broad, the orange check might indicate a false positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values and modifiable arguments of stubbed
functions. You save the constraints as an XML file to use them for subsequent analyses. If
your source code changes, you can update the previous constraints. You do not have to
create a new constraint template.

Note In Bug Finder, you can only constrain global variables. You cannot constrain
function inputs or return values of stubbed functions.

Create Constraint Template
User Interface (Desktop Products Only)
1 Open the project configuration. On the Configuration pane, select Inputs &

Stubbing.
2 To the right of Constraint setup, click the Edit button to open the Constraint

Specification window.

6 Configure Inputs and Stubbing Options

6-2

3 In the Constraint Specification dialog box, create a blank constraint template. The
template contains a list of all variables on which you can provide constraints. To

create a new template, click . The software compiles your project and
creates a template. The new template is stored in a file
Module_number_Project_name_drs_template.xml in your project folder.

4 Specify your constraints and save the template as an XML file. For more information,
see “External Constraints for Polyspace Analysis” on page 6-8.

5 Click OK.

You see the full path to the template XML file in the Constraint setup field. If you
run an analysis, Polyspace uses this template for extracting variable constraints.

Command Line

Use the option Constraint setup (-data-range-specifications) to specify the
constraints XML file.

To specify constraints in the XML file:

1 First, create a blank XML template. The template lists all global variables, function
inputs and modifiable arguments and return values of stubbed functions without
specifying any constraints on them.

 Specify External Constraints

6-3

To create a blank template, run an analysis only upto the compilation phase. In Bug
Finder, disable checking of defects. Use the option Find defects (-checkers). In
Code Prover, check for source compliance only. Use the argument compile for the
option Verification level (-to). After the analysis, a blank template XML
drs-template.xml is created in the results folder.

For C++ projects, to create a blank constraints template, you have to use the
argument cpp-normalize for the option Verification level (-to).

2 Edit the XML file to specify your constraints.

For examples, see:

• “Constrain Global Variable Range” (Polyspace Code Prover Server)
• “Constrain Function Inputs” (Polyspace Code Prover Server)

Create Constraint Template from Code Prover Analysis Results
You can constrain variable ranges based on their expected range in real-world
applications. For instance, if a variable represents vehicle speed, you can set a maximum
possible value. You can also constrain variable ranges only if they cause too many orange
checks from overapproximation.

A Code Prover analysis shows all global variables, function inputs and stubbed functions
that lead to orange checks from possible overapproximation. You can constrain only these
variables for a more precise analysis.

1 Open Code Prover results in the Polyspace user interface or Polyspace Access web
interface.

2 Open the Orange Sources pane. Do one of the following:

• Select an orange check. If the software can trace an orange check to a root cause,

a icon appears on the Result Details pane. Click this icon to open the
Orange Sources pane.

• In the Polyspace user interface, select Window > Show/Hide View > Orange
Sources. In the Polyspace Access web interface, select Layout > Show/Hide
View > Orange Sources.

6 Configure Inputs and Stubbing Options

6-4

You see the full list of variables (function inputs or return values of stubbed
functions) that can cause orange checks. Constrain the ranges of these variables.

Update Existing Template
With new code submissions, you might have to specify additional constraints. You can
update an existing template to add global variables, function inputs and stubbed functions
that come from the new code submissions.

Additionally, if you remove some variables or functions from your code, constraints on
them are not applicable any more. Instead of regenerating a constraint template and
respecifying the constraints, you can update an existing template and remove the
variables that are not present in your code.

User Interface (Desktop Products Only)

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

• In the Constraint setup field, enter the path to the template XML file. Click Edit.
•

Click Edit. In the Constraint Specification dialog box, click the icon to
navigate to your template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non
Applicable node. To remove an entry under the Non Applicable node or the
node itself, right-click and select Remove This Node.

b Specify your new constraints for any of the other variables.

Command Line

In a continuous integration workflow, you can use the constraints XML file from the
previous run. If new code submissions require additional constraints:

 Specify External Constraints

6-5

1 Specify constraints on variables from new code submissions in a constraints XML file.
See Create Constraint Template: Command Line on page 6-3.

2 Merge the constraints XML file with the new constraints and the constraints XML file
from the previous run.

Specify Constraints in Code
Specifying constraints outside your code allows for more precise analysis. However, you
must use the code within the specified constraints because the constraints are outside
your code. Otherwise, the results might not apply. For example, if you use function inputs
outside your specified range, a run-time error can occur on an operation even though
checks on the operation are green.

To specify constraints inside your code, you can use:

• Appropriate error handling tests in your code.

Polyspace checks to determine if the errors can actually occur. If they do not occur, the
test blocks appear as Unreachable code.

• The assert macro. For example, to constrain a variable var in the range [0,10], you
can use assert(var >= 0 && var <=10);.

Polyspace checks your assert statements to see if the condition can be false.
Following the assert statement, Polyspace considers that the assert condition is
true. Using assert statements, you can constrain your variables for the remaining
code in the same scope. For examples, see Assertion.

See Also
Constraint setup (-data-range-specifications)

Related Examples
• “External Constraints for Polyspace Analysis” on page 6-8
• “Constrain Global Variable Range” (Polyspace Code Prover Server)

6 Configure Inputs and Stubbing Options

6-6

http://www.cplusplus.com/reference/cassert/assert/

• “Constrain Function Inputs” (Polyspace Code Prover Server)
• “XML File Format for Constraints” on page 6-23

 See Also

6-7

External Constraints for Polyspace Analysis
For a more precise analysis with Polyspace, you can specify external constraints on:

• Global Variables.
• User-defined Functions.

Constraints on user-defined functions do not apply to a Bug Finder analysis.
• Stubbed Functions.

Constraints on stubbed functions do not apply to a Bug Finder analysis.

For more information, see “Specify External Constraints” on page 6-2. For a partial list of
limitations, see “Constraint Specification Limitations” on page 6-15.

In the user interface of the Polyspace desktop products, you can specify the constraints
through a Constraint Specification window. The constraints are saved in an XML file
that you can reuse for other projects.

This table explains the various columns in the Constraint Specification window. If you
directly edit the constraint XML file to specify a constraint (for instance, in the Polyspace
Server products), this table also shows the correspondence between columns in the user
interface and entries in the XML file. The XML entry highlighted in bold appears in the
corresponding column of the Constraint Specification window.

6 Configure Inputs and Stubbing Options

6-8

Column Settings
Name Displays the list of variables and functions in your Project for which

you can specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in the

project. Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the

project. Expand a function name to see the inputs and return
values.

XML File Entry:

<function name = "funcName" ...>

<scalar name = "arg1" ...>

<pointer name = "arg2" ...>

File Displays the name of the source file containing the variable or
function.
XML File Entry:

<file name = "C:\Project1\Sources\file.c" ...>

Attributes Displays information about the variable or function.

For example, static variables display static. Uncalled functions
display unused.
XML File Entry:

<function name="funcName" attributes="unused" ...>

Data Type Displays the variable type.
XML File Entry:

<scalar name="arg1" complete_type="int32" ...>

 External Constraints for Polyspace Analysis

6-9

Column Settings
Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function,
depending on the value of the -functions-called-in-loop (C)
or -main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.
• YES – Main generator will call this function.
XML File Entry:

<function name="funcName" main_generator_called="MAIN_GENERATOR" ...>

6 Configure Inputs and Stubbing Options

6-10

Column Settings
Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending on the
settings of the main generator options -main-generator-
writes-variables and -no-def-init-glob.

• IGNORE – Variable is not assigned to any range, even if a range is
specified.

• INIT – Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode if
you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main
generator.

• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed object

is allocated (Initialize Pointer and Init Allocated options).
XML File Entry:

<scalar name="arg1" init_mode="INIT" ...>

 External Constraints for Polyspace Analysis

6-11

Column Settings
Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum and
maximum values of the variable type. For example, for the type long,
min and max correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday,
 wednesday, thursday, friday, saturday};

XML File Entry:

<scalar name="arg1" init_range="-1..0"...>

Initialize Pointer Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL pointer
(or not).

• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-15.
XML File Entry:

<pointer name="arg1" initialize_pointer="Not NULL"...>

6 Configure Inputs and Stubbing Options

6-12

Column Settings
Init Allocated Applicable only to pointers. Enabled only when you specify Init

Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main
generator.

• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an array.

(This setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-15.
XML File Entry:

<pointer name="arg1" init_pointed="MAIN_GENERATOR"...>

 External Constraints for Polyspace Analysis

6-13

Column Settings
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the pointed
object is considered as an array).

The Init Allocated parameter specifies how many allocated objects
are actually initialized. For instance, consider this code:

void func(int *ptr) {
 assert(ptr[0]==1);
 assert(ptr[1]==1);
}

If you specify these constraints:

• ptr has Init Allocated set to MULTI and # Allocated Objects set
to 2,

• *ptr has Init Range set to 1..1,

both assertions are green. However, if you specify these constraints:

• ptr has Init Allocated set to SINGLE
• *ptr has Init Range set to 1..1,

the second assertion is orange. Only the first object that ptr points to
initialized to 1. Objects beyond the first can be potentially full range.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-15.
XML File Entry:

<pointer name="arg1" number_allocated="10"...>

Global Assert Specifies whether to perform an assert check on the variable at global
initialization, and after each assignment.
XML File Entry:

<scalar name="glob" global_assert="YES"...>

6 Configure Inputs and Stubbing Options

6-14

Column Settings
Global Assert
Range

Specifies the minimum and maximum values for the range you want
to check.
XML File Entry:

<scalar name="glob" assert_range="0..200"...>

Comment Remarks that you enter, for example, justification for your DRS
values.
XML File Entry:

<scalar name="glob" comment="Speed Range"...>

Constraint Specification Limitations
You cannot specify these constraints:

• C++ Pointers cannot be constrained:

In C++, you cannot constrain pointer arguments of functions. Functions that have
pointer arguments only do not appear in the constraint specification interface.

Because of polymorphism, a C++ pointer can point to objects of multiple classes in a
class hierarchy and can require invoking different constructors. The pre-analysis for
constraint specification cannot determine which object type to constrain or which
constructor to call.

• Constraints cannot be relations:

You cannot specify a constraint that relates the return value of a function to its inputs.
You can only specify a constant range for the constraints.

• Multiple ranges not possible:

You cannot specify multiple ranges for a constraint. For instance, you cannot specify
that a function argument has either the value -1 or a value in the range [1,100].
Instead, specify the range [-1,100] or perform two separate analyses, once with the
value -1 and once with the range [1,100].

 External Constraints for Polyspace Analysis

6-15

See Also

More About
• “Specify External Constraints” on page 6-2

6 Configure Inputs and Stubbing Options

6-16

Constrain Global Variable Range
You can impose constraints (also known as data range specifications or DRS) on the range
of a global variable and check with Code Prover whether write operations on the variable
violate the constraint. For the general workflow, see “Specify External Constraints” on
page 6-2.

User Interface (Desktop Products Only)
To constrain a global variable range and also check for violation of the constraint:

1
In your project configuration, select Inputs & Stubbing. Click the button
next to the Constraint setup field.

2
In the Constraint Specification window, click .

Under the Global Variables node, you see a list of global variables.

3 For the global variable that you want to constrain:

 Constrain Global Variable Range

6-17

• From the drop-down list in the Global Assert column, select YES.
• In the Global Assert Range column, enter the range in the format min..max.

min is the minimum value and max the maximum value for the global variable.
4

To save your specifications, click the button.

In Save a Constraint File window, save your entries as an xml file.
5 Run a verification and open the results.

For every write operation on the global variable, you see a green, orange, or red
Correctness condition check. If the check is:

• Green, the variable is within the range that you specified.
• Orange, the variable can be outside the range that you specified.
• Red, the variable is outside the range that you specified.

When two or more tasks write to the same global variable, the Correctness
condition check can appear orange on all write operations to the variable even when
only one write operation takes the variable outside the Global Assert range.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML
file specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as
follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints” on
page 6-2. In the XML file, locate and constrain the global variables. XML tags for global
variables appear directly within the file tag without an enclosing function tag. For
instance, in this constraint XML, PowerLevel and SHR are global variables:

<file name="\\\\home\\Polyspace_Workspace\\Examples\\Code_Prover_Example\\sources\\tasks1.c">
 <scalar name="PowerLevel" line="26" .. global_assert="YES" assert_range="0..10"/>
 <scalar name="SHR" line="30" ... global_assert="NO" assert_range="" />

6 Configure Inputs and Stubbing Options

6-18

 <function name="Tserver" line="73" .../>
 <function name="initregulate" line="47" .../>
 <function name="orderregulate" line="35" ...>
 <scalar name="return" ... global_assert="unsupported" assert_range="unsupported" />
 </function>
 <function name="proc1" line="101" .../>
</file>

To specify a constraint on a global variable and check during a Code Prover analysis if the
constraint is violated:

1 Set the global_assert attribute of the variable's scalar tag to YES.
2 Set the assert_range attribute to a range in the form min..max, for instance,

0..10.

In the preceding example, the variable PowerLevel is constrained this way.

See Also
Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Polyspace Results
Correctness condition

More About
• “Specify External Constraints” on page 6-2
• “External Constraints for Polyspace Analysis” on page 6-8
• “Constrain Function Inputs” (Polyspace Code Prover Server)

 See Also

6-19

Constrain Function Inputs
For a more precise Code Prover analysis, you can specify constraints (also known as data
range specifications or DRS) on function inputs. Code Prover checks your function
definition for run-time errors with respect to the constrained inputs. For the general
workflow, see “Specify External Constraints” on page 6-2.

For instance, for a function defined as follows, you can specify that the argument val has
values in the range [1..10]. You can also specify that the argument ptr points to a 3-
element array where each element is initialized:

int func(int val, int* ptr) {
 .
 .
}

User Interface (Desktop Products Only)
To specify constraints on function inputs:

1
In your project configuration, select Inputs & Stubbing. Click the button
for Constraint setup.

2
In the Constraint Specification window, click .

Under the User Defined Functions node, you see a list of functions whose inputs
can be constrained.

3 Expand the node for each function.

You see each function input on a separate row. The inputs have the syntax
function_name.arg1, function_name.arg2, etc.

4 Specify your constraints on one or more of the function inputs. For more information,
see “External Constraints for Polyspace Analysis” on page 6-8.

For example, in the preceding code:

• To constrain val to the range [1..10], select INIT for Init Mode and enter
1..10 for Init Range.

6 Configure Inputs and Stubbing Options

6-20

• To specify that ptr points to a 3-element array where each element is initialized,
select MULTI for Init Allocated and enter 3 for # Allocated Objects.

5 Run verification and open the results. On the Source pane, place your cursor on the
function inputs.

The tooltips display the constraints. For example, in the preceding code, the tooltip
displays that val has values in 1..10.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML
file specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as
follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints” on
page 6-2. In the XML file, locate and constrain the function inputs. The function inputs
appear as a scalar or pointer tag in a function tag. The inputs are named as arg1,
arg2 and so on. For instance, for the preceding code, the XML structure for the inputs of
func appear as follows:

<function name="func" line="1" attributes="unused"
 main_generator_called="MAIN_GENERATOR" comment="">

 Constrain Function Inputs

6-21

 <scalar name="arg1" line="1" base_type="int32"
 complete_type="int32" init_mode="INIT" init_range="1..10" />
 <pointer name="arg2" line="1" complete_type="int32 *"
 init_mode="INIT" initialize_pointer="Not NULL" number_allocated="3"
 init_pointed="MULTI">
 <scalar line="1" base_type="int32" complete_type="int32"
 init_mode="MAIN_GENERATOR" init_range=""/>
 </pointer>
 <scalar name="return" line="1" base_type="int32" complete_type="int32"
 init_mode="disabled" init_range="disabled"/>
</function>

To specify a constraint on a function input, set the attributes init_mode and
init_range for scalar variables, and init_pointed and number_allocated for
pointer variables.

• To constrain val to the range [1..10], set the init_mode attribute of the tag with
name arg1 to INIT and init_range to 1..10.

• To specify that ptr points to a 3-element array where each element is initialized, set
the init_mode attribute of the tag with name arg2 to INIT, init_pointed to
MULTI and number_allocated to 3.

See Also
Constraint setup (-data-range-specifications)

More About
• “Specify External Constraints” on page 6-2
• “External Constraints for Polyspace Analysis” on page 6-8
• “Constrain Global Variable Range” (Polyspace Code Prover Server)

6 Configure Inputs and Stubbing Options

6-22

XML File Format for Constraints
For a more precise Polyspace analysis, you can specify constraints on global variables,
function inputs and stubbed functions. You can specify the constraints in the user
interface of the Polyspace desktop products or at the command line as an XML file. For
the general workflow, see “Specify External Constraints” on page 6-2.

This topic describes details of the constraint XML file schema. You typically require this
information only if you create a constraint XML from scratch. If you run a verification
once, the software automatically generates a template constraint file drs-
template.xml in your results folder. Instead of creating a constraint XML file from
scratch, it is easier to edit this template XML file to specify your constraints. For some
examples, see:

• “Constrain Global Variable Range” (Polyspace Code Prover Server)
• “Constrain Function Inputs” (Polyspace Code Prover Server)

For another explanation of what the XML tags mean, see “External Constraints for
Polyspace Analysis” on page 6-8.

You can also see the information in this topic and the underlying XML schema in
polyspaceroot\polyspace\drs. Here, polyspaceroot is the Polyspace installation
folder, for instance, C:\Program Files\Polyspace\R2019a.

Syntax Description — XML Elements
The constraints file contains the following XML elements:

• <global> element — Declares the global scope, and is the root element of the XML
file.

• <file> element — Declares a file scope. Must be enclosed in the <global> element.
May enclose any variable or function declaration. Static variables must be enclosed in
a file element to avoid conflicts.

• <scalar> element— Declares an integer or a floating point variable. May be enclosed
in any recognized element, but cannot enclose any element. Sets init/permanent/global
asserts on variables.

• <pointer> element — Declares a pointer variable. May enclose any other variable
declarations (including itself), to define the pointed objects. Specifies what value is
written into pointer (NULL or not), how many objects are allocated and how the
pointed objects are initialized.

 XML File Format for Constraints

6-23

• <array> element — Declares an array variable. May enclose any other variable
definition (including itself), to define the members of the array.

• <struct> element — Declares a structure variable or object (instance of class). May
enclose any other variable definition (including itself), to define the fields of the
structure.

• <function> element — Declares a function or class method scope. May enclose any
variable definition, to define the arguments and the return value of the function.
Arguments should be named arg1, arg2, …argn and the return value should be
called return.

The following notes apply to specific fields in each XML element:

• (*) — Fields used only by the GUI. These fields are not mandatory for verification to
accept the ranges. The field line contains the line number where the variable is
declared in the source code, complete_type contains a string with the complete
variable type, and base_type is used by the GUI to compute the min and max values.
The field comment is used to add information about any node.

• (**) — The field name is mandatory for scope elements <file> and <function>
(except for function pointers). For other elements, the name must be specified when
declaring a root symbol or a struct field.

• (***) — If more than one attribute applies to the variable, the attributes must be
separated by a space. Only the static attribute is mandatory, to avoid conflicts between
static variables having the same name. An attribute can be defined multiple times
without impact.

• (****) — This element is used only by the GUI, to determine which init modes are
allowed for the current element (according to its type). The value works as a mask,
where the following values are added to specify which modes are allowed:

• 1: The mode “NO” is allowed.
• 2 : The mode “INIT” is allowed.
• 4: The mode “PERMANENT” is allowed.
• 8: The mode “MAIN_GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and “MAIN_GENERATOR” are
allowed. To see how this value is computed, refer to “Valid Modes and Default Values”
on page 6-28.

• (*****) — A sub-element of a pointer (i.e. a pointed object) will be taken into account
only if init_pointed is equal to SINGLE, MULTI, SINGLE_CERTAIN_WRITE or
MULTI_CERTAIN_WRITE.

6 Configure Inputs and Stubbing Options

6-24

• (******) — SINGLE_CERTAIN_WRITE or MULTI_CERTAIN_WRITE are available for
parameters and return values of stubbed functions only if they are pointers. If the
parameter or return value is a structure and the structure has a pointer field, they are
also available for the pointer field.

<file> Element

Field Syntax
name filepath_or_filename
comment string

<scalar> Element

Field Syntax
name (**) name
line (*) line
base_type (*) intx

uintx
floatx

Attributes (***) volatile
extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
init_range range

disabled
unsupported

 XML File Format for Constraints

6-25

Field Syntax
global_ assert YES

NO
disabled
unsupported

assert_range range
disabled
unsupported

comment(*) string

<pointer> Element

Field Syntax
Name (**) name
line (*) line
Attributes (***) volatile

extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
initialize_ pointer May be:

NULL
Not NULL
NULL

number_ allocated single value
disabled
unsupported

6 Configure Inputs and Stubbing Options

6-26

Field Syntax
init_pointed (******) MAIN_GENERATOR

NONE

SINGLE

MULTI

SINGLE_CERTAIN_WRITE

MULTI_CERTAIN_WRITE

disabled
comment string

<array> and <struct> Elements

Field Syntax
Name (**) name
line (*) line
complete_type (*) type
attributes (***) volatile

extern
static
const

comment string

<function> Element

Field Syntax
Name (**) name
line (*) line

 XML File Format for Constraints

6-27

Field Syntax
main_generator_called MAIN_GENERATOR

YES
NO
disabled

attributes (***) static
extern
unused

comment string

Valid Modes and Default Values
Scope Type Init modes Gassert

mode
Initialize
pointer

Init
allocated

Default

Global
variables

Base
type

Unqualifie
d/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT
PERMANENT

YES
NO

 Main
generator
dependant

Volatile
scalar

PERMANENT disabled PERMANEN
T min..max

Extern
scalar

INIT
PERMANENT

YES
NO

 INIT
min..max

Struct Struct field Refer to field type
Array Array

element
Refer to element type

Global
variables

Pointer Unqualifie
d/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

Main
generator
dependant

Volatile
pointer

un-
supported

 un-
supported

un-
supported

6 Configure Inputs and Stubbing Options

6-28

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Extern
pointer

IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Pointed
volatile
scalar

un-
supported

un-
supported

Pointed
extern
scalar

INIT un-
supported

 INIT
min..max

Pointed
other
scalars

MAIN_
GENERATOR
INIT

un-
supported

 MAIN_
GENERATO
R
dependant

Pointed
pointer

MAIN_
GENERATOR
INIT/

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

MAIN_
GENERATO
R
dependant

Pointed
function

un-
supported

un-
supported

Function
parameter
s

Userdef
functio
n

Scalar
parameter
s

MAIN_
GENERATOR
INIT

un-
supported

 INIT
min..max

Pointer
parameter
s

MAIN_
GENERATOR
INIT

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Other
parameter
s

Refer to parameter type

Stubbe
d
functio
n

Scalar
parameter

disabled un-
supported

 XML File Format for Constraints

6-29

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
parameter
s

disabled disabled NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

MULTI

Pointed
parameter
s

PERMANENT un-
supported

 PERMANEN
T
min..max

Pointed
const
parameter
s

disabled un-
supported

Function
return

Userdef
functio
n

Return disabled un-
supported

disabled disabled

Stubbe
d
functio
n

Scalar
return

PERMANENT un-
supported

 PERMANEN
T
min..max

6 Configure Inputs and Stubbing Options

6-30

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
return

PERMANENT un-
supported

May be
NULL
Not NULL
NULL

NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

PERMANEN
T
May be
NULL max
MULTI

See Also

More About
• “Specify External Constraints” on page 6-2
• “Constrain Global Variable Range” (Polyspace Code Prover Server)
• “Constrain Function Inputs” (Polyspace Code Prover Server)

 See Also

6-31

Configure Multitasking Analysis

7

Analyze Multitasking Programs in Polyspace
With Polyspace, you can analyze programs where multiple threads (tasks) run
concurrently.

In addition to regular run-time checks, the analysis looks for issues specific to concurrent
execution:

• Data races, deadlocks, consecutive or missing locks and unlocks (Bug Finder)
• Unprotected shared variables (Code Prover)

7 Configure Multitasking Analysis

7-2

Configure Analysis

If your code uses multitasking primitives from certain families, for instance,
pthread_create for thread creation:

• In Bug Finder, the analysis detects them and extracts your multitasking model from
the code.

• In Code Prover, you must enable this automatic detection explicitly.

See “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-6.

Alternatively, define your multitasking model through the analysis options. In the user
interface, the options are on the Multitasking node in the Configuration pane. For
more information, see “Configuring Polyspace Multitasking Analysis Manually” on page 7-
19.

 Analyze Multitasking Programs in Polyspace

7-3

Review Analysis Results
Bug Finder

The Bug Finder analysis shows concurrency defects such as data races and deadlocks.
See “Concurrency Defects” (Polyspace Bug Finder Access).

Code Prover

7 Configure Multitasking Analysis

7-4

The Code Prover analysis exhaustively checks if shared global variables are protected
from concurrent access. See “Global Variables” (Polyspace Code Prover Access).

Review the results using the message on the Result Details pane. See a visual

representation of conflicting operations using the (graph) icon.

See Also

More About
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-6
• “Configuring Polyspace Multitasking Analysis Manually” on page 7-19
• “Protections for Shared Variables in Multitasking Code” on page 7-24

 See Also

7-5

Auto-Detection of Thread Creation and Critical Section
in Polyspace

With Polyspace, you can analyze programs where multiple threads run concurrently.
Polyspace can analyze your multitasking code for data races, deadlocks and other
concurrency defects, if the analysis is aware of the concurrency model in your code. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. Bug Finder detects them by default. In Code Prover, you enable automatic
detection using the option Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 7-2.

If your thread creation function is not detected automatically:

• You can also map the function to a thread-creation function that Polyspace can detect
automatically. Use the option -function-behavior-specifications.

• Otherwise, you must manually model your multitasking threads by using configuration
options. See “Configuring Polyspace Multitasking Analysis Manually” on page 7-19.

Multitasking Routines that Polyspace Can Detect
Polyspace can detect thread creation and critical sections if you use primitives from these
groups. Polyspace recognizes calls to these routines as the creation of a new thread or as
the beginning or end of a critical section.

POSIX

Thread creation: pthread_create

Critical section begins: pthread_mutex_lock

Critical section ends: pthread_mutex_unlock

VxWorks

Thread creation: taskSpawn

7 Configure Multitasking Analysis

7-6

Critical section begins: semTake

Critical section ends: semGive

To activate automatic detection of concurrency primitives for VxWorks®, in the user
interface of the Polyspace desktop products, use the VxWorks template. For more
information on templates, see “Create Project Using Configuration Template” (Polyspace
Bug Finder). At the command-line, use these options:

-D1=CPU=I80386
-D2=__GNUC__=2
-D3=__OS_VXWORKS

Concurrency detection is possible only if the multitasking functions are created from an
entry point named main. If the entry point has a different name, such as
vxworks_entry_point, do one of the following:

• Provide a main function.
• Preprocessor definitions (-D): In preprocessor definitions, set

vxworks_entry_point=main.

Windows

Thread creation: CreateThread

Critical section begins: EnterCriticalSection

Critical section ends: LeaveCriticalSection

μC/OS II

Thread creation: OSTaskCreate

Critical section begins: OSMutexPend

Critical section ends: OSMutexPost

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-7

C++11

Thread creation: std::thread::thread

Critical section begins: std::mutex::lock

Critical section ends: std::mutex::unlock

For autodetection of C++11 threads, explicitly specify paths to your compiler header files
or use polyspace-configure.

For instance, if you use std::thread for thread creation, explicitly specify the path to
the folder containing thread.h.

See also “Limitations of Automatic Thread Detection” on page 7-13.

C11

Thread creation: thrd_create

Critical section begins: mtx_lock

Critical section ends: mtx_unlock

Example of Automatic Thread Detection
The following multitasking code models five philosophers sharing five forks. The example
uses POSIX® thread creation routines and illustrates a classic example of a deadlock. Run
Bug Finder on this code to see the deadlock.

7 Configure Multitasking Analysis

7-8

#include "pthread.h"
#include <stdio.h>
#include <unistd.h>

pthread_mutex_t forks[5];

void* philo1(void* args)
{
 while (1) {
 printf("Philosopher 1 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 1 takes left fork\n");
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 1 takes right fork\n");
 printf("Philosopher 1 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 1 puts down right fork\n");
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 1 puts down left fork\n");
 }
 return NULL;
}

void* philo2(void* args)
{
 while (1) {
 printf("Philosopher 2 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 2 takes left fork\n");
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 2 takes right fork\n");
 printf("Philosopher 2 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 2 puts down right fork\n");
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 2 puts down left fork\n");
 }
 return NULL;
}

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-9

void* philo3(void* args)
{
 while (1) {
 printf("Philosopher 3 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 3 takes left fork\n");
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 3 takes right fork\n");
 printf("Philosopher 3 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 3 puts down right fork\n");
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 3 puts down left fork\n");
 }
 return NULL;
}

void* philo4(void* args)
{
 while (1) {
 printf("Philosopher 4 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 4 takes left fork\n");
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 4 takes right fork\n");
 printf("Philosopher 4 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 4 puts down right fork\n");
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 4 puts down left fork\n");
 }
 return NULL;
}

void* philo5(void* args)
{
 while (1) {
 printf("Philosopher 5 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[4]);

7 Configure Multitasking Analysis

7-10

 printf("Philosopher 5 takes left fork\n");
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 5 takes right fork\n");
 printf("Philosopher 5 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 5 puts down right fork\n");
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 5 puts down left fork\n");
 }
 return NULL;
}

int main(void)
{
 pthread_t ph[5];
 pthread_create(&ph[0], NULL, philo1, NULL);
 pthread_create(&ph[1], NULL, philo2, NULL);
 pthread_create(&ph[2], NULL, philo3, NULL);
 pthread_create(&ph[3], NULL, philo4, NULL);
 pthread_create(&ph[4], NULL, philo5, NULL);

 pthread_join(ph[0], NULL);
 pthread_join(ph[1], NULL);
 pthread_join(ph[2], NULL);
 pthread_join(ph[3], NULL);
 pthread_join(ph[4], NULL);
 return 1;
}

Each philosopher needs two forks to eat, a right and a left fork. The functions philo1,
philo2, philo3, philo4, and philo5 represent the philosophers. Each function
requires two pthread_mutex_t resources, representing the two forks required to eat.
All five functions run at the same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first
fork (each thread locks one pthread_mutex_t resource), all the forks are being used.
So, the philosophers (threads) wait for their second fork (second pthread_mutex_t
resource) to become available. However, all the forks (resources) are being held by the
waiting philosophers (threads), causing a deadlock.

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-11

Naming Convention for Automatically Detected Threads
If you use a function such as pthread_create() to create new threads (tasks), each
thread is associated with an unique identifier. For instance, in this example, two threads
are created with identifiers id1 and id2.

pthread_t* id1, id2;

void main()
{
 pthread_create(id1, NULL, start_routine, NULL);
 pthread_create(id2, NULL, start_routine, NULL);
}

If a data race occurs between the threads, the analysis can detect it. When displaying the
results, the threads are indicated as task_id, where id is the identifier associated with
the thread. In the preceding example, the threads are identified as task_id1 and
task_id2.

If a thread identifiers is:

• Local to a function, the thread name shows the function.

For instance, the thread created below appears as task_f:id

void f(void)
{
 pthread_t* id;
 pthread_create(id, NULL, start_routine, NULL);
}

• A field of a structure, the thread name shows the structure.

For instance, the thread created below appears as task_a#id

struct {pthread_t* id; int x;} a;
pthread_create(a.id,NULL,start_routine,NULL);

• An array member, the thread name shows the array.

For instance, the thread created below appears as task_tab[1].

pthread_t* tab[10];
pthread_create(tab[1],NULL,start_routine,NULL);

7 Configure Multitasking Analysis

7-12

Limitations of Automatic Thread Detection
The multitasking model extracted by Polyspace does not include some features. Polyspace
cannot model:

• Thread priorities and attributes — Ignored by Polyspace.
• Recursive semaphores.
• Unbounded thread identifiers, such as extern pthread_t ids[] — Warning.
• Calls to concurrency primitive through high-order calls — Warning.
• Aliases on thread identifiers — Polyspace over-approximates when the alias is used.
• Termination of threads — Polyspace ignores pthread_join and thrd_join.

Polyspace replaces pthread_exit and thrd_exit by a standard exit.
• (Polyspace Bug Finder only) Creation of multiple threads through multiple calls to the

same function with different pointer arguments.

Example

In this example, Polyspace considers that only one thread is created.

pthread_t id1, id2;
void start(pthread_t* id)
{
 pthread_create(id, NULL, start_routine, NULL);
}
void main()
{
 start(&id1);
 start(&id2);
}

• (Polyspace Code Prover only) Shared local variables — Only global variables are
considered shared. If a local variable is accessed by multiple threads, the analysis
does not take into account the shared nature of the variable.

Example

In this example, the analysis does not take into account that the local variable x can be
accessed by both task1 and task2 (after the new thread is created).

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-13

#include <pthread.h>
#include <stdlib.h>

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 int x;
 x = 2;
 pthread_t id;
 (void)pthread_create(&id, NULL, task2, (void*) &x);
 /* x (local var) passed to task2 */
 x = 3 ;

 /* Unknown thread priority means x = 1 OR x = 3.*/
 /* However, the analysis considers x = 3 */
 /* Assertion below is green */
 assert(x == 3);
}

int main(void)
{
 task1();
 return 0;
}

• (Polyspace Code Prover only) Shared dynamic memory — Only global variables are
considered shared. If a dynamically allocated memory region is accessed by multiple
threads, the analysis does not take into account its shared nature.

Example

In this example, the analysis does not take into account that lx points to a shared
memory region. The region can be accessed by both task1 and task2 (after the new
thread is created). The Code Prover analysis also reports lx as a non-shared variable.

7 Configure Multitasking Analysis

7-14

#include <pthread.h>
#include <stdlib.h>

static int* lx;

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 pthread_t id;
 lx = (int*)malloc(sizeof(int));

 if (lx == NULL) exit(1);

 (void)pthread_create(&id, NULL, task2, (void*) lx);

 *lx = 3 ;

 /* Unknown thread priority means *lx = 1 OR *lx = 3.*/
 /* However, the analysis considers *lx = 3 */
 /* Assertion below is green */
 assert(*lx == 3);
}

int main(void)
{
 task1();
 return 0;
}

• Number of tasks created with CreateThread when threadId is set to NULL— When
you create multiple threads that execute the same function, if the last argument of
CreateThread is NULL, Polyspace only detects one instance of this function, or task.

Example

In this example, Polyspace detects only one instance of thread_function1(), but 10
instances of thread_function2().

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-15

#include <windows.h>

#define MAX_LOOP_THREADS 10

DWORD WINAPI thread_function1(LPVOID data) {}
DWORD WINAPI thread_function2(LPVOID data) {}

HANDLE hds1[MAX_LOOP_THREADS];
HANDLE hds2[MAX_LOOP_THREADS];
DWORD threadId[MAX_LOOP_THREADS];

int main(void)
{
 for (int i = 0; i < MAX_LOOP_THREADS; i++) {

 hds1[i] = CreateThread(NULL, 0, thread_function1, NULL, 0, NULL);
 hds2[i] = CreateThread(NULL, 0, thread_function2, NULL, 0, &threadId[i]);
 }

 return 0;
}

• (C++11 only) If you use lambda expressions as start functions during thread creation,
Polyspace does not detect shared variables in the lambda expressions.

Example

In this example, Polyspace does not detect that the variable y used in the lambda
expressions is shared between two threads. As a result, Bug Finder, for instance, does
not show a Data race defect.

#include <thread>
int y;
int main() {
 std::thread t1([] {y++;});
 std::thread t2([] {y++;});
 t1.join();
 t2.join();
 return 0;
}

• (C++11 threads with Polyspace Code Prover only) String literals as thread function
argument — Code Prover shows a red Illegally dereferenced pointer error if the

7 Configure Multitasking Analysis

7-16

thread function has an std::string& parameter and you pass a string literal
argument.

Example

In this example, the thread function foo has an std::string& parameter. When
starting a thread, a string literal is passed as argument to this function, which
undergoes an implicit conversion to std::string type. Code Prover loses track of
the original string literal in this conversion. Therefore, a dashed red underline appears
on operator<< in the body of foo and a red Illegally dereferenced pointer check
in the body of operator<<.

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::thread t1(foo,"foo_arg");
}

To work around this issue, assign the string literal to a temporary variable and pass
the variable as argument to the thread function.

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::string str = "foo_arg";
 std::thread t1(foo, str);
}

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-17

See Also
-function-behavior-specifications | Enable automatic concurrency
detection for Code Prover (-enable-concurrency-detection)

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Configuring Polyspace Multitasking Analysis Manually” on page 7-19

7 Configure Multitasking Analysis

7-18

Configuring Polyspace Multitasking Analysis Manually
With Polyspace, you can analyze programs where multiple threads run concurrently. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. See “Auto-Detection of Thread Creation and Critical Section in Polyspace”
on page 7-6.

If your code has functions that are intended for concurrent execution, but that cannot be
detected automatically, you must specify them before analysis. If these functions operate
on a common variable, you must also specify protection mechanisms for those operations.

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 7-2.

Specify Options for Multitasking Analysis
Use these options to specify cyclic tasks, interrupts and protections for shared variables.
In the Polyspace user interface, the options are on the Multitasking node in the
Configuration pane.

• Entry points (-entry-points): Specify noncyclic entry point functions.

Do not specify main. Polyspace implicitly considers main as an entry point function.
• Cyclic tasks (-cyclic-tasks): Specify functions that are scheduled at periodic

intervals.
• Interrupts (-interrupts): Specify functions that can run asynchronously.
• Disabling all interrupts (-routine-disable-interrupts -routine-

enable-interrupts): Specify functions that disable and reenable interrupts (Bug
Finder only).

• Critical section details (-critical-section-begin -critical-
section-end): Specify functions that begin and end critical sections.

• Temporally exclusive tasks (-temporal-exclusions-file): Specify
groups of functions that are temporally exclusive.

• -preemptable-interrupts: Specify functions that have lower priority than
interrupts, but higher priority than tasks (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

 Configuring Polyspace Multitasking Analysis Manually

7-19

• -non-preemptable-tasks: Specify functions that have higher priority than tasks,
but lower priority than interrupts (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

Adapt Code for Code Prover Multitasking Analysis
The multitasking analysis in Code Prover is more exhaustive about finding potentially
unprotected shared variables and therefore follows a strict model.

Tasks and interrupts must be void-void functions.

Functions that you specify as tasks and interrupts must have the prototype:

void func(void);

Suppose you want to specify a function func that takes int arguments:

void func(int);

Define a wrapper void-void function that calls func with a volatile value. Specify this
wrapper function as a task or interrupt.

void func_wrapper() {
 volatile int arg;
 func(arg);
}

The main function must end.

Code Prover assumes that the main function ends before all tasks and interrupts begin. If
the main function contains an infinite loop or run-time error, the tasks and interrupts are
not analyzed. If you see that there are no checks in your tasks and interrupts, look for a
token underlined in dashed red to identify the issue in the main function. See “Reasons
for Unchecked Code” (Polyspace Code Prover).

Suppose you want to specify the main function as a cyclic task.

void performTask1Cycle(void);
void performTask2Cycle(void);

7 Configure Multitasking Analysis

7-20

void main() {
 while(1) {
 performTask1Cycle();
 }
}

void task2() {
 while(1) {
 performTask2Cycle();
 }
}

Replace the definition of main with:

#ifdef POLYSPACE
void main() {
}
void task1() {
 while(1) {
 performTask1Cycle();
 }
}

#else
void main() {
 while(1) {
 performTask1Cycle();
 }
}
#endif

The replacement defines an empty main and places the content of main into another
function task1 if a macro POLYSPACE is defined. Define the macro POLYSPACE using the
option Preprocessor definitions (-D) and specify task1 for the option Tasks (-
entry-points).

This assumption does not apply to automatically detected threads. For instance, a main
function can create threads using pthread_create.

All tasks and interrupts can interrupt each other.

 Configuring Polyspace Multitasking Analysis Manually

7-21

The Bug Finder analysis considers priorities of tasks. A function that you specify as a task
cannot interrupt a function that you specify as an interrupt because an interrupt has
higher priority.

The Code Prover analysis considers that all tasks and interrupts can interrupt each other.

All tasks and interrupts can run any number of times in any sequence.

The Code Prover analysis considers that all tasks and interrupts can run any number of
times in any sequence.

Suppose in this example, you specify reset and inc as cyclic tasks. The analysis shows
an overflow on the operation var+=2.

void reset(void) {
 var=0;
}

void inc(void) {
 var+=2;
}

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed five times. Write a wrapper function that implements this sequence. Specify this
new function as a cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 inc();
 inc();
 inc();
 inc();
 inc();
 reset();
 }
 }

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed zero to five times. Write a wrapper function that implements this sequence.
Specify this new function as a cyclic task instead of reset and inc.

7 Configure Multitasking Analysis

7-22

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 reset();
 }
 }

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-6

 See Also

7-23

Protections for Shared Variables in Multitasking Code
If your code is intended for multitasking, tasks in your code can access a common shared
variable. To prevent data races, you can protect read and write operations on the
variable. This topic shows the various protection mechanisms that Polyspace can
recognize.

Detect Unprotected Access

You can detect an unprotected access using either Bug Finder or Code Prover. Code
Prover is more exhaustive and proves if a shared variable is protected from concurrent
access.

• Bug Finder detects an unprotected access using the result Data race. See Data
race.

• Code Prover detects an unprotected access using the result Shared unprotected
global variable. See Potentially unprotected variable.

Suppose you analyze this code, specifying signal_handler_1 and signal_handler_2
as cyclic tasks. Use the analysis option Cyclic tasks (-cyclic-tasks).

#include <limits.h>
int shared_var;

7 Configure Multitasking Analysis

7-24

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void signal_handler_1(void) {
 reset();
 inc();
 inc();
}

void signal_handler_2(void) {
 shared_var = INT_MAX;
}

 void main() {
}

Bug Finder shows a data race on shared_var. Code Prover shows that shared_var is a
potentially unprotected shared variable. Code Prover also shows that the operation
shared_var += 2 can overflow. The overflow occurs if the call to inc in
signal_handler_1 immediately follows the operation shared_var = INT_MAX in
signal_handler_2.

Protect Using Critical Sections
One possible solution is to protect operations on shared variables using critical sections.

In the preceding example, modify your code so that operations on shared_var are in the
same critical section. Use the functions take_semaphore and give_semaphore to
begin and end the critical sections. To specify these functions that begin and end critical
sections, use the analysis options Critical section details (-critical-
section-begin -critical-section-end).

#include <limits.h>
int shared_var;

void inc() {

 Protections for Shared Variables in Multitasking Code

7-25

 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

/* Declare lock and unlock functions */
void take_semaphore(void);
void give_semaphore(void);

void signal_handler_1() {
 /* Begin critical section */
 take_semaphore();
 reset();
 inc();
 inc();
 /* End critical section */
 give_semaphore();

}

void signal_handler_2() {
 /* Begin critical section */
 take_semaphore();
 shared_var = INT_MAX;
 /* End critical section */
 give_semaphore();

}

void main() {
}

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset() in
signal_handler_1 always precedes calls to inc().

You can also use primitives such as the POSIX functions pthread_mutex_lock and
pthread_mutex_unlock to begin and end critical sections. For a list of primitives that
Polyspace can detect automatically, see “Auto-Detection of Thread Creation and Critical
Section in Polyspace” on page 7-6.

7 Configure Multitasking Analysis

7-26

Protect Using Temporally Exclusive Tasks
Another possible solution is to specify a group of tasks as temporally exclusive.
Temporally exclusive tasks cannot interrupt each other.

In the preceding example, specify that signal_handler_1 and signal_handler_2 are
temporally exclusive. Use the option Temporally exclusive tasks (-temporal-
exclusions-file).

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset() in
signal_handler_1 always precedes calls to inc().

Protect Using Priorities
Another possible solution is to specify that one task has higher priority over another.

In the preceding example, specify that signal_handler_1 is an interrupt. Retain
signal_handler_2 as a cyclic task. Use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts).

Bug Finder does not show the data race defect anymore. The reason is this:

• The operation shared_var = INT_MAX in signal_handler_2 is atomic. Therefore,
the operations in signal_handler_1 cannot interrupt it.

• The operations in signal_handler_1 cannot be interrupted by the operation in
signal_handler_2 because signal_handler_1 has higher priority.

You can specify up to four different priorities with these options (with highest priority
listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

A task with higher priority is atomic with respect to a task with lower priority. Note that
the checker Data race including atomic operations ignores the difference in

 Protections for Shared Variables in Multitasking Code

7-27

priorities and continues to show the data race. See also “Define Preemptable Interrupts
and Nonpreemptable Tasks” on page 7-33.

Code Prover does not consider priorities of tasks. Therefore, Code Prover still shows
shared_var as a potentially unprotected global variable.

Protect By Disabling Interrupts
In a Bug Finder analysis, you can protect a group of operations by disabling all interrupts.
Use the option Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).

After you call a routine to disable interrupts, all subsequent operations are atomic until
you call another routine to reenable interrupts. The operations are atomic with respect to
operations in all other tasks.

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Define Atomic Operations in Multitasking Code” on page 7-29

7 Configure Multitasking Analysis

7-28

Define Atomic Operations in Multitasking Code
In code with multiple threads, you can use Polyspace Bug Finder to detect data races or
Polyspace Code Prover to list potentially unprotected shared variables.

To determine if a variable shared between multiple threads is protected against
concurrent access, Polyspace checks if the operations on the variable are atomic.

Nonatomic Operations
If an operation is nonatomic, Polyspace considers that the operation involves multiple
steps. These steps do not need to occur together and can be interrupted by operations in
other threads.

For instance, consider these two operations in two different threads:

• Thread 1: var++;

This operation is nonatomic because it takes place in three steps: reading var,
incrementing var, and writing back var.

• Thread 2: var = 0;

This operation is atomic if the size of var is less than the word size on the target. See
details below for how Polyspace determines the word size.

If the two operations are not protected (by using, for instance, critical sections), the
operation in the second thread can interrupt the operation in the first thread. If the
interruption happens after var is incremented in the first thread but before the
incremented value is written back, you can see unexpected results.

What Polyspace Considers as Nonatomic
Code Prover considers all operations as nonatomic unless you protect them, for instance,
by using critical sections. See “Define Specific Operations as Atomic” on page 7-30.

Bug Finder considers an operation as nonatomic if it can translate into more than one
machine instruction. For instance:

 Define Atomic Operations in Multitasking Code

7-29

• The operation can involve both a read and write operation. For example, var++
involves reading the value of var, increasing the value by one and writing the
increased value back to var.

• The operation can involve a 64-bit variable on a 32-bit target. For example, the
operation

long long var1, var2;
var1=var2;

involves two steps in copying the content of var2 to var1 on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to
compute atomicity. For instance, if you use i386 as your Target processor type, the
Pointer size is 32 bits and Long long and Double sizes are both 64 bits. Therefore,
Polyspace considers copying one long long or double variable to another as
nonatomic.

See also Target processor type (-target).
• The operation can involve writing the return value of a function call to a shared

variable. For example, the operation x=func() involves calling func and writing the
return value of func to x.

To detect data races where at least one of the two interrupting operations is nonatomic,
enable the Bug Finder checker Data race. To remove this constraint on the checker,
enable Data race including atomic operations.

Define Specific Operations as Atomic
You might want to define a group of operations as atomic. This group of operations cannot
be interrupted by operations in another thread or task.

Use one of these techniques:

• Critical sections

Protect a group of operations with critical sections.

A critical section begins and ends with calls to specific functions. You can use a
predefined set of primitives to begin or end critical sections, or use your own
functions.

7 Configure Multitasking Analysis

7-30

A group of operations in a critical section are atomic with respect to another group of
operations that are in the same critical section (that is, having the same beginning and
ending function).

Specify critical sections using the option Critical section details (-
critical-section-begin -critical-section-end).

• Temporally exclusive tasks

Protect a group of operations by specifying certain tasks as temporally exclusive.

If a group of tasks are temporally exclusive, all operations in one task are atomic with
respect to operations in the other tasks.

Specify temporal exclusion using the option Temporally exclusive tasks (-
temporal-exclusions-file).

• Task priorities (Bug Finder only)

Protect a group of operations by specifying that certain tasks have higher priorities.
For instance, interrupts have higher priorities over cyclic tasks.

You can specify up to four different priorities with these options (with highest priority
listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

All operations in a task with higher priority are atomic with respect to operations in
tasks with lower priorities. See also “Define Preemptable Interrupts and
Nonpreemptable Tasks” on page 7-33.

• Routine disabling interrupts (Bug Finder only)

Protect a group of operations by disabling all interrupts. Use the option Disabling
all interrupts (-routine-disable-interrupts -routine-enable-
interrupts).

After you call a routine to disable interrupts, all subsequent operations are atomic
until you call another routine to reenable interrupts. The operations are atomic with
respect to operations in all other tasks.

 Define Atomic Operations in Multitasking Code

7-31

For a tutorial, see “Protections for Shared Variables in Multitasking Code” on page 7-24.

See Also
Critical section details (-critical-section-begin -critical-section-
end) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Temporally exclusive tasks (-temporal-exclusions-file)

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Protections for Shared Variables in Multitasking Code” on page 7-24

7 Configure Multitasking Analysis

7-32

Define Preemptable Interrupts and Nonpreemptable
Tasks

Bug Finder detects data races between concurrent tasks. Using Bug Finder analysis
options, you can fix data race detection by specifying that certain tasks have higher
priorities over others. A task with higher priority is atomic with respect to tasks with
lower priority and cannot be interrupted by those tasks.

Emulating Task Priorities
You can specify up to four different priorities with these options (with highest priority
listed first):

• Interrupts (nonpreemptable): Use option Interrupts (-interrupts).
• Interrupts (preemptable): Use options Interrupts (-interrupts) and -

preemptable-interrupts.
• Cyclic tasks (nonpreemptable): Use options Cyclic tasks (-cyclic-tasks) and -

non-preemptable-tasks.

You can also define preemptable noncyclic tasks with the option Entry points (-
entry-points) and -non-preemptable-tasks.

• Cyclic tasks (preemptable): Use option Cyclic tasks (-cyclic-tasks).

You can also define noncyclic tasks with the option Entry points (-entry-
points).

For instance, interrupts have the highest priority and cannot be preempted by other
tasks. To define a class of interrupts that can be preempted, lower their priority by
making them preemptable.

Examples of Task Priorities
Consider this example with three tasks. A variable var is shared between the two tasks
task1 and task2 without any protection such as a critical section. Depending on the
priorities of task1 and task2, Bug Finder shows a data race. The third task is not

 Define Preemptable Interrupts and Nonpreemptable Tasks

7-33

relevant for the example (and is added only to include a critical section, otherwise data
race detection is disabled).

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var++;
}

void task2(void) {
 var=0;
}

void task3(void){
 begin_critical_section();
 /* Some atomic operation */
 end_critical_section();
}

Adjust the priorities of task1 and task2 and see whether a data race is detected. For
instance:

1 Configure these mulitasking options:

• Interrupts (-interrupts): Specify task1 and task2 as interrupts.
• Cyclic tasks (-cyclic-tasks): Specify task3 as a cyclic task.
• Critical section details (-critical-section-begin -critical-

section-end): Specify begin_critical_section as a function beginning a
critical section and end_critical_section as a function ending a critical
section.

2 Run Bug Finder.

You do not see a data race. Since task1 and task2 are nonpreemptable interrupts,
the shared variable cannot be accessed concurrently.

3 Change task1 to a preemptable interrupt by using the option -preemptable-
interrupts.

4 Run Bug Finder again. You now see a data race on the shared variable var.

7 Configure Multitasking Analysis

7-34

Further Explorations
Modify this example in the following ways and see the effect of the modification:

• Change the priorities of task1 and task2.

For instance, you can leave task1 as a nonpreemptable interrupt but change task2
to a preemptable interrupt by using the option -preemptable-interrupts.

The data race disappears. The reason is:

• task1 has higher priority and cannot be interrupted by task2.
• The operation in task2 is atomic and cannot be interrupted by task1.

• Enable the checker Data race including atomic operations (not enabled by
default). Use the option Find defects (-checkers).

You see the data race again. The checker considers all operations as potentially
nonatomic and the operation in task2 can now be interrupted by the higher priority
operation in task1.

Try other modifications to the analysis options and see the result of the checkers.

See Also
Polyspace Analysis Options
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Interrupts (-interrupts)

Polyspace Results
Data race | Data race including atomic operations

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Protections for Shared Variables in Multitasking Code” on page 7-24
• “Define Atomic Operations in Multitasking Code” on page 7-29

 See Also

7-35

Define Critical Sections with Functions That Take
Arguments

When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock and unlock function.

lock();
/* Critical section code */
unlock();

A group of operations in a critical section are atomic with respect to another group of
operations that are in the same critical section (that is, having the same lock and unlock
function). See also “Define Atomic Operations in Multitasking Code” on page 7-29.

Polyspace Assumption on Functions Defining Critical Sections
Polyspace ignores arguments to functions that begin and end critical sections.

For instance, Polyspace treats the two code sections below as the same critical section if
you specify my_task_1 and my_task_2 as entry points, my_lock as the lock function
and my_unlock as the unlock function.

int shared_var;

void my_lock(int);
void my_unlock(int);

void my_task_1() {
 my_lock(1);
 /* Critical section code */
 shared_var=0;
 my_unlock(1);
}

void my_task_2() {
 my_lock(2);
 /* Critical section code */
 shared_var++;
 my_unlock(2);
}

7 Configure Multitasking Analysis

7-36

As a result, the analysis considers that these two sections are protected from interrupting
each other even though they might not be protected. For instance, Bug Finder does not
detect the data race on shared_var.

Often, the function arguments can be determined only at run time. Since Polyspace
models the critical sections prior to the static analysis and run-time error checking phase,
the analysis cannot determine if the function arguments are different and ignores the
arguments.

Adapt Polyspace Analysis to Lock and Unlock Functions with
Arguments
When the arguments to the functions defining critical sections are compile-time
constants, you can adapt the analysis to work around the Polyspace assumption.

For instance, you can use Polyspace analysis options so that the code in the preceding
example appears to Polyspace as shown here.

int shared_var;

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

void my_task_1() {
 my_lock_1();
 /* Critical section code */
 shared_var=0;
 my_unlock_1();
}

void my_task_2() {
 my_lock_2();
 /* Critical section code */
 shared_var++;
 my_unlock_2();
}

If you then specify my_lock_1 and my_lock_2 as the lock functions and my_unlock_1
and my_unlock_2 as the unlock functions, the analysis recognizes the two sections of
code as part of different critical sections. For instance, Bug Finder detects a data race on
shared_var.

 Define Critical Sections with Functions That Take Arguments

7-37

To adapt the analysis for lock and unlock functions that take compile-time constants as
arguments:

1 In a header file common_polyspace_include.h, convert the function arguments
into extensions of the function name with #define-s. In addition, provide a
declaration for the new functions.

For instance, for the preceding example, use these #define-s and declarations:

#define my_lock(X) my_lock_##X()
#define my_unlock(X) my_unlock_##X()

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

2 Specify the file name common_polyspace_include.h as argument for the option
Include (-include).

The analysis considers this header file as #include-d in all source files that are
analyzed.

3 Specify the new function names as functions beginning and ending critical sections.
Use the options Critical section details (-critical-section-begin -
critical-section-end).

See Also
Critical section details (-critical-section-begin -critical-section-
end)

More About
• “Protections for Shared Variables in Multitasking Code” on page 7-24

7 Configure Multitasking Analysis

7-38

Configure Coding Rules Checking
and Code Metrics Computation

8

Check for Coding Standard Violations
With Polyspace, you can check your C/C++ code for violations of coding rules such as
MISRA C:2012 rules. Adhering to coding rules can reduce the number of defects and
improve the quality of your code.

Polyspace can detect the violations of these rules:

• MISRA C: 2004
• MISRA C: 2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO®/IEC TS 17961 (Bug Finder only)

Configure Coding Rules Checking

8 Configure Coding Rules Checking and Code Metrics Computation

8-2

Specify Standard and Predefined Checker Subsets

Specify the coding rules through Polyspace analysis options. When you run Bug Finder or
Code Prover, the analysis looks for coding rule violations in addition to other checks. You
can disable the other checks and look for coding rule violations only.

In the Polyspace user interface (desktop products), the options are on the Configuration
pane under the Coding Standards & Code Metrics node.

For C code, use one of these options:

• Check MISRA C:2004 (-misra2)

For generated code, enable the option specific to generated code.
• Check MISRA C:2012 (-misra3)

For generated code, enable the option specific to generated code.

 Check for Coding Standard Violations

8-3

• Check SEI CERT-C (-cert-c)
• Check ISO/IEC TS 17961 (-iso-17961)

For C++ code, use one of these options:

• Check MISRA C++ rules (-misra-cpp)
• Check JSF C++ rules (-jsf-coding-rules)
• Check AUTOSAR C++ 14 (-autosar-cpp14)
• Check SEI CERT-C++ (-cert-cpp)

You can specify a predefined subset of rules, for instance, mandatory for MISRA C: 2012.
These subsets are typically defined by the standard.

You can also define naming conventions for identifiers using regular expressions. See
“Create Custom Coding Rules” on page 8-56.

Customize Checker Subsets

Instead of the predefined subsets, you can specify your own subset of rules from a coding
standard.

User Interface (Desktop Products Only)

1 Select the coding standard. From the drop-down list for the subset of rules, select
from-file. Click Edit.

2 In the Findings selection window, the coding standard is highlighted on the left
pane. On the right pane, select the rules that you want to include in your analysis.

8 Configure Coding Rules Checking and Code Metrics Computation

8-4

When you save the rule selections, the configuration is saved in an XML file that you can
reuse for multiple analyses. The same file contains rules selected for all coding standards.
You can reuse this file across multiple projects to enforce common coding standards in a
team or organization. To reuse this file in another project in the Polyspace user interface:

• Choose a coding standard in the project configuration. From the drop-down list for the
subset of rules, select from-file.

 Check for Coding Standard Violations

8-5

• Click Edit and browse to the file location. Alternatively, enter the file name as
argument for the option Set checkers by file (-checkers-selection-file).

Command Line

With the Polyspace desktop products, you can create a coding standard XML file in the
user interface and then use this file for command-line analysis.

With the Polyspace server products, you have to create a coding standard XML from
scratch. Use the file StandardsConfiguration.xml in polyspaceserverroot
\polyspace\examples\cxx\Bug_Finder_Example\sources as a template and turn
on rules using entries in the XML file. Here, polyspaceserverroot is the root
installation folder for the Polyspace Server products, for instance, C:\Program Files
\Polyspace Server\R2019a.

For instance, to turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “CERT C++ Rules” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)

8 Configure Coding Rules Checking and Code Metrics Computation

8-6

• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

Check for Coding Standards Only

To check for coding standards only:

• In Bug Finder, disable checking of defects. Use the option Find defects (-
checkers).

• In Code Prover, check for source compliance only. Use the option Verification
level (-to).

These rules are checked in the later stages of a Code Prover analysis: MISRA C:2004
rules 9.1, 13.7, and 21.1, and MISRA C:2012 rules 2.2, 9.1, 14.3, and 18.1. If you stop
Code Prover at source compliance checking, the analysis might not find all violations
of these rules. You can also see a difference in results based on your choice for the
option Verification level (-to). For example, it is possible that Code Prover
suspects in the first pass that a variable may be uninitialized but proves in the second
pass that the variable is initialized. In that case, you see a violation of MISRA C:2012
Rule 9.1 in the first pass but not in the second pass.

Review Coding Rule Violations

 Check for Coding Standard Violations

8-7

After analysis, you see the coding standard violations on the Results List pane. Select a
violation to see further details on the Result Details pane and the source code on the
Source pane.

8 Configure Coding Rules Checking and Code Metrics Computation

8-8

Violations of coding standards are indicated in the source code with the icon.

For further steps, see “Review Results in Polyspace Bug Finder Access” (Polyspace Bug
Finder Access).

Generate Reports
You can generate reports using templates that are explicitly defined for coding standards.
Use the CodingStandards template. This template:

• Reports only coding standard violations in your analysis results, and omits other types
of results such as defects, run-time errors or code metrics.

• Creates a separate chapter in the report for each coding standard. the chapter
provides an overview of all violations of the standard and then lists each violation.

To specify a report template, use the option Bug Finder and Code Prover report
(-report-template).

See Also

More About
• “Interpret Polyspace Bug Finder Access Results” (Polyspace Bug Finder Access)

 See Also

8-9

Avoid Violations of MISRA C 2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and
definitions. If you follow these practices, you are less likely to have conflicting
declarations or to unintentionally modify variables.

If you do not follow these practices during coding, your code might require major changes
later to be MISRA C-compliant. You might have too many MISRA C violations. Sometimes,
in fixing a violation, you might violate another rule. Instead, keep these rules in mind
when coding. Use the MISRA C:2012 checker to spot any issues that you might have
missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
• If you want to use an object or function in multiple files, declare the object or

function once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include
the header file in all the source files where you need the object. In one of those source
files, define the object. For instance:

8 Configure Coding Rules Checking and Code Metrics Computation

8-10

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header
file in all the source files where you need the function. In one of those source files,
define the function.

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4,
MISRA C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

• If you want to use an object or function in one file only, declare and define the
object or function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For
instance, this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.8.

• If you want to use an object in one function only, declare the object in the
function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

 Avoid Violations of MISRA C 2012 Rules 8.x

8-11

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.9.

• If you want to inline a function, declare and define the function with the
static specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10.
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.
• When declaring enumerations, try to avoid mixing implicit and explicit
specifications.

Avoid mixing implicit and explicit specifications. You can specify the first enumeration
constant explicitly, but after that, use either implicit or explicit specifications. For
instance, avoid this type of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.

8 Configure Coding Rules Checking and Code Metrics Computation

8-12

• When declaring pointers, point to a const-qualified type unless you want to
use the pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for
modifying the pointed object. For instance, in this example, ptr is not used to modify
the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13.

 Avoid Violations of MISRA C 2012 Rules 8.x

8-13

Software Quality Objective Subsets (C:2004)
In this section...
“Rules in SQO-Subset1” on page 8-14
“Rules in SQO-Subset2” on page 8-15

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not be
used.

13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.

8 Configure Coding Rules Checking and Code Metrics Computation

8-14

Rule number Description
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function

 Software Quality Objective Subsets (C:2004)

8-15

Rule number Description
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.2 Braces shall be used to indicate and match the structure in the

nonzero initialization of arrays and structures
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used

8 Configure Coding Rules Checking and Code Metrics Computation

8-16

Rule number Description
12.12 The underlying bit representations of floating-point values shall not

be used.
13.1 Assignment operators shall not be used in expressions that yield

Boolean values
13.2 Tests of a value against zero should be made explicit, unless the

operand is effectively Boolean
13.3 Floating-point expressions shall not be tested for equality or

inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
13.6 Numeric variables being used within a “for” loop for iteration

counting should not be modified in the body of the loop
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

 Software Quality Objective Subsets (C:2004)

8-17

Rule number Description
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter
shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

8 Configure Coding Rules Checking and Code Metrics Computation

8-18

See Also
Check MISRA C:2004 (-misra2)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-19

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 8-20
“Rules in SQO-Subset2” on page 8-21

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-20

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

 Software Quality Objective Subsets (AC AGC)

8-21

Rule number Description
12.9 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not

be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.8 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look

like preprocessing directives
19.10 In the definition of a function-like macro each instance of a parameter

shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

8 Configure Coding Rules Checking and Code Metrics Computation

8-22

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

See Also
Check MISRA AC AGC (-misra-ac-agc)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-23

Software Quality Objective Subsets (C:2012)
In this section...
“Guidelines in SQO-Subset1” on page 8-24
“Guidelines in SQO-Subset2” on page 8-25

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the
precision of your Polyspace results. When you set up coding rules checking, you can
select these subsets.

Guidelines in SQO-Subset1
The following set of MISRA C:2012 coding guidelines typically reduces the number of
unproven results in Polyspace Code Prover.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
14.1 A loop counter shall not have essentially floating type

8 Configure Coding Rules Checking and Code Metrics Computation

8-24

Rule Description
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified

 Software Quality Objective Subsets (C:2012)

8-25

Rule Description
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
11.8 A cast shall not remove any const or volatile qualification from the type

pointed to by a pointer
12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the

same under all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end

8 Configure Coding Rules Checking and Code Metrics Computation

8-26

Rule Description
15.6 The body of an iteration- statement or a selection- statement shall be a

compound- statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label
16.5 A default label shall appear as either the first or the last switch label of a

switch statement
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a

macro argument
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not

immediately be followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

 Software Quality Objective Subsets (C:2012)

8-27

See Also
Check MISRA C:2012 (-misra3)

More About
• “Check for Coding Standard Violations” on page 8-2

8 Configure Coding Rules Checking and Code Metrics Computation

8-28

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 8-29
“SQO Subset 2 – Indirect Impact on Selectivity” on page 8-31

SQO Subset 1 – Direct Impact on Selectivity
The following set of MISRA C++ coding rules will typically improve the number of
unproven results in Polyspace Code Prover.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an

outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.

 Software Quality Objective Subsets (C++)

8-29

MISRA C++ Rule Description
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

8 Configure Coding Rules Checking and Code Metrics Computation

8-30

MISRA C++ Rule Description
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of
the same function (in other translation units) shall be declared with the same
set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can improve the
number of unproven results in Polyspace Code Prover. The following set of coding rules
may help to address design issues in your code. The SQO-subset2 option checks the
rules in SQO-subset1 and SQO-subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in

an outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the

static storage class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that

minimizes its visibility.
3-9-2 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.

 Software Quality Objective Subsets (C++)

8-31

MISRA C++ Rule Description
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the
equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13 The condition of an if-statement and the condition of an iteration- statement
shall have type bool

5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where

they point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.

8 Configure Coding Rules Checking and Code Metrics Computation

8-32

MISRA C++ Rule Description
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-3-2 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.

 Software Quality Objective Subsets (C++)

8-33

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an explicit

return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.

8 Configure Coding Rules Checking and Code Metrics Computation

8-34

MISRA C++ Rule Description
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

See Also
Check MISRA C++:2008 (-misra-cpp)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-35

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that
do not require the run-time error detection part of the analysis. If you want only those
rules checked, you can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the
analysis. The subsets are available with the options Check MISRA C:2004 (-misra2),
Check MISRA AC AGC (-misra-ac-agc), and Check MISRA C:2012 (-misra3).

Argument Purpose
single-unit-
rules

Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, a
Bug Finder analysis stops after the compilation phase.

system-
decidable-rules

Check rules in the single-unit-rules subset and some rules
that apply to the collective set of program files. The additional rules
are the less complex rules that apply at the integration level. These
rules can be checked only at the integration level because the rules
involve more than one translation unit.

If you detect only coding rule violations and select this subset, a
Bug Finder analysis stops after the linking phase.

See also “Check for Coding Standard Violations” on page 8-2.

MISRA C: 2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

Environment

Rule Description
1.1* All code shall conform to ISO 9899:1990 "Programming languages - C",

amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996.

8 Configure Coding Rules Checking and Code Metrics Computation

8-36

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be

used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more

than 31 characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier

in another name space, with the exception of structure and union member
names.

5.7* No identifier name should be reused.

 Coding Rule Subsets Checked Early in Analysis

8-37

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character

values.
6.2 Signed and unsigned char type shall be used only for the storage and use of

numeric values.
6.3 typedefs that indicate size and signedness should be used in place of the

basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be

used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-38

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible

at both the function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be

explicitly stated.
8.3 For each function parameter the type given in the declaration and definition

shall be identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be

compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have

internal linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero

initialization of arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.

 Coding Rule Subsets Checked Early in Analysis

8-39

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a

different underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a
different type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type
that is narrower and of the same signedness as the underlying type of the
expression.

10.4 The value of a complex expression of float type may only be cast to narrower
floating type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to
the underlying type of the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

8 Configure Coding Rules Checking and Code Metrics Computation

8-40

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a

different pointer to object type.
11.5 A cast shall not be performed that removes any const or volatile

qualification from the type addressed by a pointer

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions.
12.3 The sizeof operator should not be used on expressions that contain side

effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is
signed.

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with

other operators in an expression

 Coding Rule Subsets Checked Early in Analysis

8-41

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean

values.
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop.

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used

for loop termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The

else keyword shall be followed by either a compound statement, or another
if statement.

14.10 All if else if constructs should contain a final else clause.

8 Configure Coding Rules Checking and Code Metrics Computation

8-42

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch

clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration.
16.4* The identifiers used in the declaration and definition of a function shall be

identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of

parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty.

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

 Coding Rule Subsets Checked Early in Analysis

8-43

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-44

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors

directives or comments.
19.2 Nonstandard characters should not occur in header file names in #include

directives.
19.3 The #include directive shall be followed by either a <filename> or "filename"

sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero
construct.

19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined()
operator.

19.12 There shall be at most one occurrence of the # or ## preprocessor operators in
a single macro definition.

19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two

standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file

being included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.

 Coding Rule Subsets Checked Early in Analysis

8-45

Rule Description
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if or #ifdef directive to which they are related.

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be

defined, redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be

reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall

not be used.
20.11 The library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

MISRA C: 2012 Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

8 Configure Coding Rules Checking and Code Metrics Computation

8-46

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and

constraints, and shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

 Coding Rule Subsets Checked Early in Analysis

8-47

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in

an outer scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be

unique.
5.9* Identifiers that define objects or functions with internal linkage should be

unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented

in an unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is

"pointer to const-qualified char".

8 Configure Coding Rules Checking and Code Metrics Computation

8-48

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type

qualifiers.
8.4 A compatible declaration shall be visible when an object or function with

external linkage is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are

referenced in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects

and functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a

single function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly

specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration

constant shall be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of

the array shall be specified explicitly.

 Coding Rule Subsets Checked Early in Analysis

8-49

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in

addition and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are

performed shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential

type.
10.6 The value of a composite expression shall not be assigned to an object with

wider essential type.
10.7 If a composite expression is used as one operand of an operator in which the

usual arithmetic conversions are performed then the other operand shall not
have wider essential type.

10.8 The value of a composite expression shall not be cast to a different essential
type category or a wider essential type.

8 Configure Coding Rules Checking and Code Metrics Computation

8-50

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any

other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type

and any other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to

a different object type.
11.4 A conversion should not be performed between a pointer to object and an

integer type.
11.5 A conversion should not be performed from pointer to void into pointer to

object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed

to by a pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer

constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-

around.

 Coding Rule Subsets Checked Early in Analysis

8-51

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator

should have no other potential side effects other than that caused by the
increment or decrement operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which

has potential side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression

of an iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block,

or in any block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate

any iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a

compound statement.
15.7 All if … else if constructs shall be terminated with an else statement.

8 Configure Coding Rules Checking and Code Metrics Computation

8-52

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a

switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword

between the [].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

 Coding Rule Subsets Checked Early in Analysis

8-53

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or

comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur

in a header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename

\" sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument.
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall

evaluate to 0 or 1.
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately

be followed by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself

subject to further macro replacement, shall only be used as an operand to
these operators.

20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if, #ifdef or #ifndef directive to which they are related.

8 Configure Coding Rules Checking and Code Metrics Computation

8-54

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved

macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be

used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall

not be used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-55

Create Custom Coding Rules
This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

The tutorial uses the following code stored in a file printInitialValue.c:

#include <stdio.h>

typedef struct {
 int a;
 int b;
} collection;

void main()
{
 collection myCollection= {0,0};
 printf("Initial values in the collection are %d and %d.",
 myCollection.a,myCollection.b);
}

User Interface (Desktop Products Only)
1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Standards & Code Metrics. Select the

Check custom rules box.
3

Click .

The Findings selection window opens, displaying in the left pane all the coding
standards Polyspace supports, and with the Custom node highlighted.

4 Specify the rules to check for in the right pane.

Expand the 4 Structs node. For the option 4.3 All struct fields must follow the
specified pattern:

8 Configure Coding Rules Checking and Code Metrics Computation

8-56

Column Title Action
Status Select .
Convention Enter All struct fields must

begin with s_ and have capital
letters or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

5 Save the file and run the analysis. On the Results List pane, you see two violations
of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.
b On the Result Details pane, you see the error message that you had entered,

All struct fields must begin with s_ and have capital letters
6 Right-click the Source pane and select Open Editor. The file

printInitialValue.c opens in the Code Editor pane or an external text editor
depending on your Preferences.

7 In the file, replace all instances of a with s_A and b with s_B. Rerun the analysis.

The custom rule violations no longer appear on the Results List pane.

Command Line
Create a coding standard configuration file. You can begin from the template file
StandardsConfiguration.xml provided in polyspaceroot\polyspace\examples
\cxx\Bug_Finder_Example\sources or polyspaceroot\polyspace\examples
\cxx\Code_Prover_Example\sources. Here, polyspaceroot is the installation
folder of the Polyspace desktop or server products. For instance, for the desktop
products, the installation folder can be C:\Program Files\Polyspace\R2019a.

To enable the custom rule 4.3, enter the following in the configuration file:

<standard name="CUSTOM RULES">
 ...
 <section name="4 Structures">

 Create Custom Coding Rules

8-57

 ...
 <check id="4.3" state="on">
 <convention>All struct fields must begin with s_
 and have capital letters or digits</convention>
 <pattern>s_[A-Z0-9_]+</pattern>
 <comment># Issue when structure field name does not begin with c_</comment>
 </check>
 ...
 </section>
 ...
</standard>

Provide this file as argument for the option Check custom rules (-custom-rules)
during analysis. For instance, if the text file is named codingStandard.xml, for an
analysis with Polyspace Code Prover Server, enter:

polyspace-code-prover-server -sources file -custom-rules codingStandard.xml

See Also
Check custom rules (-custom-rules)

8 Configure Coding Rules Checking and Code Metrics Computation

8-58

Compute Code Complexity Metrics
This example shows how to review the code complexity metrics that Polyspace computes.
For information on the individual metrics, see “Code Metrics” (Polyspace Bug Finder
Access).

Polyspace does not compute code complexity metrics by default. To compute them during
analysis, use the option Calculate code metrics (-code-metrics).

After analysis, the software displays project, file and function metrics on the Results List
pane. You can compare the computed metric values against predefined limits. If a metric
value exceeds limits, you can redesign your code to lower the metric value. For instance,
if the number of called functions is high and several of those functions are always called
together, you can write one function that fuses the bodies of those functions. Call that one
function instead of the group of functions that are called together.

Impose Limits on Metrics (Desktop Products Only)
In the user interface of the Polyspace desktop products, open some results with metrics
computations. Then impose limits on the metric values and update results on the Results
List pane to show only metric values that exceed the limits.

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

The Scope Name list shows the additional option HIS. The option HIS displays
the HIS code metrics on page 8-62 only. Select the option to see the limit values.

• To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a
limit value for the metric. Other than Comment Density, limit values are upper
limits.

To select all metrics in a category such as Function Metrics, select the box next
to the category name. For more information on the metrics categories, see “Code
Metrics” (Polyspace Bug Finder Access). If only a some metrics in a category are
selected, the check box next to the category name displays a symbol.

 Compute Code Complexity Metrics

8-59

8 Configure Coding Rules Checking and Code Metrics Computation

8-60

3 Select Apply or OK.

The drop-down list in the left of the Results List pane toolbar displays additional
options.

• If you use predefined limits, the option HIS appears. This option displays code
metrics only.

• If you define your own limits, the option corresponding to your limits file name
appears.

4 Select the option corresponding to the limits that you want. Only metric values that
violate your limits appear on the Results List pane.

5 Review each violation and decide how to rework your code to avoid the violation.

Note To enforce coding standards across your organization, share your limits file that
you saved in XML format.

People in your organization can use the Open button on the Review Scope tab and
navigate to the location of the XML file.

Impose Limits on Metrics (Server and Access products)
In the Polyspace Access web interface, limits on code complexity metrics are predefined.
In the Dashboard perspective, if you select Code Metric, a Code Metrics window
shows the metric values and limits.

To find the limits used, see “HIS Code Complexity Metrics” on page 8-62.

See Also
Calculate code metrics (-code-metrics)

More About
• “Code Metrics” (Polyspace Bug Finder Access)
• “HIS Code Complexity Metrics” on page 8-62

 See Also

8-61

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that
Polyspace evaluates. These metrics and the recommended limits for their values are part
of a standard defined by a major group of Original Equipment Manufacturers or OEMs.
For more information on how to focus your review to this subset of code metrics, see
“Compute Code Complexity Metrics” on page 8-59.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of direct recursions 0
Number of recursions 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended
lower limit is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic complexity 10
Language scope 4
Number of call levels 4
Number of calling functions 5
Number of called functions 7
Number of function parameters 5
Number of goto statements 0
Number of instructions 50

8 Configure Coding Rules Checking and Code Metrics Computation

8-62

Metric Recommended Upper Limit
Number of paths 80
Number of return statements 1

See Also

More About
• “Compute Code Complexity Metrics” on page 8-59
• “Code Metrics” (Polyspace Bug Finder Access)

 See Also

8-63

Configure Bug Finder Checkers

• “Choose Specific Bug Finder Defect Checkers” on page 9-2
• “Short Names of Bug Finder Defect Checkers” on page 9-4
• “Bug Finder Defect Groups” on page 9-21
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 9-27
• “Bug Finder Results Found in Fast Analysis Mode” on page 9-33
• “CWE Coding Standard and Polyspace Results” on page 9-66
• “Mapping Between CWE-658 or 659 and Polyspace Results” on page 9-100

9

Choose Specific Bug Finder Defect Checkers
You can check your C/C++ code using the predefined subsets of defect checkers in Bug
Finder. However, you can also customize which defects to check for during the analysis.

You can use a spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers. A spreadsheet of checkers is
provided in polyspaceroot\polyspace\resources. Here, polyspaceroot is the
Polyspace installation folder, such as C:\Program Files\Polyspace\R2019a.

User Interface (Desktop Products Only)
1 On the Configuration pane, select Bug Finder Analysis.
2 From the Find defects menu, select a set of defects. The options are:

• default for the default list of defects. This list contains defects that are
applicable to most coding projects.

See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 9-27.
• all for all defects.
• CWE for defects related to CWE coding standard.

For more information, see “CWE Coding Standard and Polyspace Results” on page
9-66.

• custom to add defects to the default list or remove defects from it.

To standardize the bug finding across your organization, you can save your list of defect
checkers as a configuration template and share with others. See “Create Project Using
Configuration Template” (Polyspace Bug Finder).

Command Line
Use the option Find defects (-checkers). Specify a comma-separated list of
checkers as arguments. For instance, to run a Bug Finder analysis on a server with only
the data race checkers enabled, enter:

9 Configure Bug Finder Checkers

9-2

polyspace-bug-finder-server -sources filename -checkers DATA_RACE,DATA_RACE_STD_LIB

Use short names for the Bug Finder checkers instead of their full names. See “Short
Names of Bug Finder Defect Checkers” on page 9-4.

See Also
Find defects (-checkers)

More About
• “Bug Finder Defect Groups” on page 9-21
• “Short Names of Bug Finder Defect Checkers” on page 9-4

 See Also

9-3

Short Names of Bug Finder Defect Checkers
To justify defects through code annotations, use the command-line names, or short names,
listed in the following table.

You can also enable the detection of a specific defect by using its short name as argument
of the -checkers option. Instead of listing individual defects, you can also specify groups
of defects by the group name, for instance, numerical, data_flow, and so on. See Find
defects (-checkers).

Defect Command-line Name
*this not returned in
copy assignment operator

RETURN_NOT_REF_TO_THIS

Abnormal termination of
exit handler

EXIT_ABNORMAL_HANDLER

Absorption of float
operand

FLOAT_ABSORPTION

Accessing object with
temporary lifetime

TEMP_OBJECT_ACCESS

Alignment changed after
memory reallocation

ALIGNMENT_CHANGE

Alternating input and
output from a stream
without flush or
positioning call

IO_INTERLEAVING

Ambiguous declaration
syntax

MOST_VEXING_PARSE

Arithmetic operation
with NULL pointer

NULL_PTR_ARITH

Array access out of
bounds

OUT_BOUND_ARRAY

Array access with
tainted index

TAINTED_ARRAY_INDEX

Assertion ASSERT

9 Configure Bug Finder Checkers

9-4

Defect Command-line Name
Atomic load and store
sequence not atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed
twice in an expression

ATOMIC_VAR_ACCESS_TWICE

Bad file access mode or
status

BAD_FILE_ACCESS_MODE_STATUS

Bad order of dropping
privileges

BAD_PRIVILEGE_DROP_ORDER

Base class assignment
operator not called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor
not virtual

DTOR_NOT_VIRTUAL

Bitwise and arithmetic
operation on the same
data

BITWISE_ARITH_MIX

Bitwise operation on
negative value

BITWISE_NEG

Blocking operation while
holding lock

BLOCKING_WHILE_LOCKED

Buffer overflow from
incorrect string format
specifier

STR_FORMAT_BUFFER_OVERFLOW

C++ reference to const-
qualified type with
subsequent modification

WRITE_REFERENCE_TO_CONST_TYPE

C++ reference type
qualified with const or
volatile

CV_QUALIFIED_REFERENCE_TYPE

Call through non-
prototyped function
pointer

UNPROTOTYPED_FUNC_CALL

Call to memset with
unintended value

MEMSET_INVALID_VALUE

 Short Names of Bug Finder Defect Checkers

9-5

Defect Command-line Name
Character value absorbed
into EOF

CHAR_EOF_CONFUSED

Closing a previously
closed resource

DOUBLE_RESOURCE_CLOSE

Code deactivated by
constant false condition

DEACTIVATED_CODE

Command executed from
externally controlled
path

TAINTED_PATH_CMD

Constant block cipher
initialization vector

CRYPTO_CIPHER_CONSTANT_IV

Constant cipher key CRYPTO_CIPHER_CONSTANT_KEY
Context initialized
incorrectly for
cryptographic operation

CRYPTO_PKEY_INCORRECT_INIT

Context initialized
incorrectly for digest
operation

CRYPTO_MD_BAD_FUNCTION

Conversion or deletion
of incomplete class
pointer

INCOMPLETE_CLASS_PTR

Copy constructor not
called in initialization
list

MISSING_COPY_CTOR_CALL

Copy of overlapping
memory

OVERLAPPING_COPY

Copy operation modifying
source operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race including
atomic operations

DATA_RACE_ALL

9 Configure Bug Finder Checkers

9-6

Defect Command-line Name
Data race through
standard library
function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of
previously deallocated
pointer

DOUBLE_DEALLOCATION

Declaration mismatch DECL_MISMATCH
Delete of void pointer DELETE_OF_VOID_PTR
Destination buffer
overflow in string
manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer
underflow in string
manipulation

STRLIB_BUFFER_UNDERFLOW

Destruction of locked
mutex

DESTROY_LOCKED

Deterministic random
output from constant
seed

RAND_SEED_CONSTANT

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Environment pointer
invalidated by previous
operation

INVALID_ENV_POINTER

Errno not checked ERRNO_NOT_CHECKED
Errno not reset MISSING_ERRNO_RESET
Exception caught by
value

EXCP_CAUGHT_BY_VALUE

Exception handler hidden
by previous handler

EXCP_HANDLER_HIDDEN

 Short Names of Bug Finder Defect Checkers

9-7

Defect Command-line Name
Execution of a binary
from a relative path can
be controlled by an
external actor

RELATIVE_PATH_CMD

Execution of externally
controlled command

TAINTED_EXTERNAL_CMD

File access between time
of check and use
(TOCTOU)

TOCTOU

File descriptor exposure
to child process

FILE_EXPOSURE_TO_CHILD

File manipulation after
chroot without chdir

CHROOT_MISUSE

Float conversion
overflow

FLOAT_CONV_OVFL

Float division by zero FLOAT_ZERO_DIV
Floating point
comparison with equality
operators

BAD_FLOAT_OP

Float overflow FLOAT_OVFL
Format string specifiers
and arguments mismatch

STRING_FORMAT

Function called from
signal handler not
asynchronous-safe

SIG_HANDLER_ASYNC_UNSAFE

Function called from
signal handler not
asynchronous-safe
(strict)

SIG_HANDLER_ASYNC_UNSAFE_STRICT

Function pointer
assigned with absolute
address

FUNC_PTR_ABSOLUTE_ADDR

9 Configure Bug Finder Checkers

9-8

Defect Command-line Name
Function that can
spuriously fail not
wrapped in loop

SPURIOUS_FAILURE_NOT_WRAPPED_IN_LOOP

Function that can
spuriously wake up not
wrapped in loop

SPURIOUS_WAKEUP_NOT_WRAPPED_IN_LOOP

Hard-coded buffer size HARD_CODED_BUFFER_SIZE
Hard-coded loop boundary HARD_CODED_LOOP_BOUNDARY
Hard-coded object size
used to manipulate
memory

HARD_CODED_MEM_SIZE

Host change using
externally controlled
elements

TAINTED_HOSTID

Improper array
initialization

IMPROPER_ARRAY_INIT

Inappropriate I/O
operation on device
files

INAPPROPRIATE_IO_ON_DEVICE

Incompatible padding for
RSA algorithm operation

CRYPTO_RSA_BAD_PADDING

Incompatible types
prevent overriding

VIRTUAL_FUNC_HIDING

Inconsistent cipher
operations

CRYPTO_CIPHER_BAD_FUNCTION

Incorrect data type
passed to va_arg

VA_ARG_INCORRECT_TYPE

Incorrect key for
cryptographic algorithm

CRYPTO_PKEY_INCORRECT_KEY

Incorrect order of
network connection
operations

BAD_NETWORK_CONNECT_ORDER

 Short Names of Bug Finder Defect Checkers

9-9

Defect Command-line Name
Incorrect pointer
scaling

BAD_PTR_SCALING

Incorrect type data
passed to va_start

VA_START_INCORRECT_TYPE

Incorrect use of
offsetof in C++

OFFSETOF_MISUSE

Incorrect use of
va_start

VA_START_MISUSE

Incorrect syntax of
flexible array member
size

FLEXIBLE_ARRAY_MEMBER_INCORRECT_SIZE

Information leak via
structure padding

PADDING_INFO_LEAK

Inline constraint not
respected

INLINE_CONSTRAINT_NOT_RESPECTED

Integer constant
overflow

INT_CONSTANT_OVFL

Integer conversion
overflow

INT_CONV_OVFL

Integer division by zero INT_ZERO_DIV
Integer overflow INT_OVFL
Integer precision
exceeded

INT_PRECISION_EXCEEDED

Invalid assumptions
about memory
organization

INVALID_MEMORY_ASSUMPTION

Invalid deletion of
pointer

BAD_DELETE

Invalid file position INVALID_FILE_POS
Invalid free of pointer BAD_FREE
Invalid use of =
(assignment) operator

BAD_EQUAL_USE

9 Configure Bug Finder Checkers

9-10

Defect Command-line Name
Invalid use of ==
(equality) operator

BAD_EQUAL_EQUAL_USE

Invalid use of standard
library floating point
routine

FLOAT_STD_LIB

Invalid use of standard
library integer routine

INT_STD_LIB

Invalid use of standard
library memory routine

MEM_STD_LIB

Invalid use of standard
library routine

OTHER_STD_LIB

Invalid use of standard
library string routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Large pass-by-value
argument

PASS_BY_VALUE

Library loaded from
externally controlled
path

TAINTED_PATH_LIB

Line with more than one
statement

MORE_THAN_ONE_STATEMENT

Load of library from a
relative path can be
controlled by an
external actor

RELATIVE_PATH_LIB

Loop bounded with
tainted value

TAINTED_LOOP_BOUNDARY

Member not initialized
in constructor

NON_INIT_MEMBER

Memory allocation with
tainted size

TAINTED_MEMORY_ALLOC_SIZE

Memory comparison of
float-point values

MEMCMP_FLOAT

 Short Names of Bug Finder Defect Checkers

9-11

Defect Command-line Name
Memory comparison of
padding data

MEMCMP_PADDING_DATA

Memory comparison of
strings

MEMCMP_STRINGS

Memory leak MEM_LEAK
Mismatch between data
length and size

DATA_LENGTH_MISMATCH

Mismatched alloc/dealloc
functions on Windows

WIN_MISMATCH_DEALLOC

Missing blinding for RSA
algorithm

CRYPTO_RSA_NO_BLINDING

Missing block cipher
initialization vector

CRYPTO_CIPHER_NO_IV

Missing break of switch
case

MISSING_SWITCH_BREAK

Missing byte reordering
when transferring data

MISSING_BYTESWAP

Missing case for switch
condition

MISSING_SWITCH_CASE

Missing cipher algorithm CRYPTO_CIPHER_NO_ALGORITHM
Missing cipher data to
process

CRYPTO_CIPHER_NO_DATA

Missing cipher final
step

CRYPTO_CIPHER_NO_FINAL

Missing cipher key CRYPTO_CIPHER_NO_KEY
Missing data for
encryption, decryption
or signing operation

CRYPTO_PKEY_NO_DATA

Missing explicit keyword MISSING_EXPLICIT_KEYWORD
Missing lock BAD_UNLOCK
Missing null in string
array

MISSING_NULL_CHAR

9 Configure Bug Finder Checkers

9-12

Defect Command-line Name
Missing overload of
allocation or
deallocation function

MISSING_OVERLOAD_NEW_DELETE_PAIR

Missing padding for RSA
algorithm

CRYPTO_RSA_NO_PADDING

Missing parameters for
key generation

CRYPTO_PKEY_NO_PARAMS

Missing peer key CRYPTO_PKEY_NO_PEER
Missing private key CRYPTO_PKEY_NO_PRIVATE_KEY
Missing public key CRYPTO_PKEY_NO_PUBLIC_KEY
Missing reset of a freed
pointer

MISSING_FREED_PTR_RESET

Missing return statement MISSING_RETURN
Missing unlock BAD_LOCK
Missing virtual
inheritance

MISSING_VIRTUAL_INHERITANCE

Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a
signal handler

SIG_HANDLER_ERRNO_MISUSE

Misuse of narrow or wide
character string

NARROW_WIDE_STR_MISUSE

Misuse of readlink() READLINK_MISUSE
Misuse of return value
from nonreentrant
standard function

NON_REENTRANT_STD_RETURN

Misuse of sign-extended
character value

CHARACTER_MISUSE

Misuse of structure with
flexible array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE

 Short Names of Bug Finder Defect Checkers

9-13

Defect Command-line Name
Modification of internal
buffer returned from
nonreentrant standard
function

WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FU
NC

Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Nonsecure hash algorithm CRYPTO_MD_WEAK_HASH
Nonsecure parameters for
key generation

CRYPTO_PKEY_WEAK_PARAMS

Nonsecure RSA public
exponent

CRYPTO_RSA_LOW_EXPONENT

Nonsecure SSL/TLS
protocol

CRYPTO_SSL_WEAK_PROTOCOL

Null pointer NULL_PTR
Object slicing OBJECT_SLICING
Opening previously
opened resource

DOUBLE_RESOURCE_OPEN

Overlapping assignment OVERLAPPING_ASSIGN
Partially accessed array PARTIALLY_ACCESSED_ARRAY
Partial override of
overloaded virtual
functions

PARTIAL_OVERRIDE

Pointer access out of
bounds

OUT_BOUND_PTR

Pointer dereference with
tainted offset

TAINTED_PTR_OFFSET

Pointer or reference to
stack variable leaving
scope

LOCAL_ADDR_ESCAPE

9 Configure Bug Finder Checkers

9-14

Defect Command-line Name
Pointer to non-
initialized value
converted to const
pointer

NON_INIT_PTR_CONV

Possible invalid
operation on boolean
operand

INVALID_OPERATION_ON_BOOLEAN

Possible misuse of
sizeof

SIZEOF_MISUSE

Possibly unintended
evaluation of expression
because of operator
precedence rules

OPERATOR_PRECEDENCE

Precision loss in
integer to float
conversion

INT_TO_FLOAT_PRECISION_LOSS

Predefined macro used as
an object

MACRO_USED_AS_OBJECT

Predictable block cipher
initialization vector

CRYPTO_CIPHER_PREDICTABLE_IV

Predictable cipher key CRYPTO_CIPHER_PREDICTABLE_KEY
Predictable random
output from predictable
seed

RAND_SEED_PREDICTABLE

Preprocessor directive
in macro argument

PRE_DIRECTIVE_MACRO_ARG

Privilege drop not
verified

MISSING_PRIVILEGE_DROP_CHECK

Qualifier removed in
conversion

QUALIFIER_MISMATCH

Resource leak RESOURCE_LEAK

 Short Names of Bug Finder Defect Checkers

9-15

Defect Command-line Name
Returned value of a
sensitive function not
checked

RETURN_NOT_CHECKED

Return from
computational exception
signal handler

SIG_HANDLER_COMP_EXCP_RETURN

Return of non const
handle to encapsulated
data member

BREAKING_DATA_ENCAPSULATION

Self assignment not
tested in operator

MISSING_SELF_ASSIGN_TEST

Sensitive data printed
out

SENSITIVE_DATA_PRINT

Sensitive heap memory
not cleared before
release

SENSITIVE_HEAP_NOT_CLEARED

Shared data access
within signal handler

SIG_HANDLER_SHARED_OBJECT

Shift of a negative
value

SHIFT_NEG

Shift operation overflow SHIFT_OVFL
Side effect in arguments
to unsafe macro

SIDE_EFFECT_IN_UNSAFE_MACRO_ARG

Side effect of
expression ignored

SIDE_EFFECT_IGNORED

Signal call from within
signal handler

SIG_HANDLER_CALLING_SIGNAL

Signal call in
multithreaded program

SIGNAL_USE_IN_MULTITHREADED_PROGRAM

Sign change integer
conversion overflow

SIGN_CHANGE

Standard function call
with incorrect arguments

STD_FUNC_ARG_MISMATCH

9 Configure Bug Finder Checkers

9-16

Defect Command-line Name
Static uncalled function UNCALLED_FUNC
Stream argument with
possibly unintended side
effects

STREAM_WITH_SIDE_EFFECT

Subtraction or
comparison between
pointers to different
arrays

PTR_TO_DIFF_ARRAY

Tainted division operand TAINTED_INT_DIVISION
Tainted modulo operand TAINTED_INT_MOD
Tainted NULL or non-
null-terminated string

TAINTED_STRING

Tainted sign change
conversion

TAINTED_SIGN_CHANGE

Tainted size of variable
length array

TAINTED_VLA_SIZE

Tainted string format TAINTED_STRING_FORMAT
Thread-specific memory
leak

THREAD_MEM_LEAK

Too many va_arg calls
for current argument
list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Umask used with chmod-
style arguments

BAD_UMASK

Uncleared sensitive data
in stack

SENSITIVE_STACK_NOT_CLEARED

Universal character name
from token concatenation

PRE_UCNAME_JOIN_TOKENS

Unprotected dynamic
memory allocation

UNPROTECTED_MEMORY_ALLOCATION

Unreachable code UNREACHABLE

 Short Names of Bug Finder Defect Checkers

9-17

Defect Command-line Name
Unreliable cast of
function pointer

FUNC_CAST

Unreliable cast of
pointer

PTR_CAST

Unsafe call to a system
function

UNSAFE_SYSTEM_CALL

Unsafe conversion
between pointer and
integer

BAD_INT_PTR_CAST

Unsafe conversion from
string to numerical
value

UNSAFE_STR_TO_NUMERIC

Unsafe standard
encryption function

UNSAFE_STD_CRYPT

Unsafe standard function UNSAFE_STD_FUNC
Unsigned integer
constant overflow

UINT_CONSTANT_OVFL

Unsigned integer
conversion overflow

UINT_CONV_OVFL

Unsigned integer
overflow

UINT_OVFL

Unused parameter UNUSED_PARAMETER
Useless if USELESS_IF
Use of automatic
variable as putenv-
family function argument

PUTENV_AUTO_VAR

Use of dangerous
standard function

DANGEROUS_STD_FUNC

Use of externally
controlled environment
variable

TAINTED_ENV_VARIABLE

9 Configure Bug Finder Checkers

9-18

Defect Command-line Name
Use of indeterminate
string

INDETERMINATE_STRING

Use of memset with size
argument zero

MEMSET_INVALID_SIZE

Use of non-secure
temporary file

NON_SECURE_TEMP_FILE

Use of obsolete standard
function

OBSOLETE_STD_FUNC

Use of path manipulation
function without maximum
sized buffer checking

PATH_BUFFER_OVERFLOW

Use of plain char type
for numerical value

BAD_PLAIN_CHAR_USE

Use of previously closed
resource

CLOSED_RESOURCE_USE

Use of previously freed
pointer

FREED_PTR

Use of setjmp/longjmp SETJMP_LONGJMP_USE
Use of signal to kill
thread

THREAD_KILLED_WITH_SIGNAL

Use of tainted pointer TAINTED_PTR
Variable length array
with nonpositive size

NON_POSITIVE_VLA_SIZE

Variable shadowing VAR_SHADOWING
Vulnerable path
manipulation

PATH_TRAVERSAL

Vulnerable permission
assignments

DANGEROUS_PERMISSIONS

Vulnerable pseudo-random
number generator

VULNERABLE_PRNG

Weak cipher algorithm CRYPTO_CIPHER_WEAK_CIPHER
Weak cipher mode CRYPTO_CIPHER_WEAK_MODE

 Short Names of Bug Finder Defect Checkers

9-19

Defect Command-line Name
Weak padding for RSA
algorithm

CRYPTO_RSA_WEAK_PADDING

Write without a further
read

USELESS_WRITE

Writing to const
qualified object

CONSTANT_OBJECT_WRITE

Writing to read-only
resource

READ_ONLY_RESOURCE_WRITE

Wrong allocated object
size for cast

OBJECT_SIZE_MISMATCH

Wrong type used in
sizeof

PTR_SIZEOF_MISMATCH

See Also

More About
• “Choose Specific Bug Finder Defect Checkers” on page 9-2

9 Configure Bug Finder Checkers

9-20

Bug Finder Defect Groups
In this section...
“Concurrency” on page 9-21
“Cryptography” on page 9-22
“Data flow” on page 9-22
“Dynamic Memory” on page 9-23
“Good Practice” on page 9-23
“Numerical” on page 9-23
“Object Oriented” on page 9-24
“Programming” on page 9-24
“Resource Management” on page 9-24
“Static Memory” on page 9-25
“Security” on page 9-25
“Tainted data” on page 9-25

For convenience, the defect checkers in Bug Finder are classified into various groups.

• In certain projects, you can choose to focus only on specific groups of defects. Specify
the group name for the option Find defects (-checkers).

• When reviewing results, you can review all results of a certain group together. Filter
out other results during review. See “Manage Results” (Polyspace Bug Finder Access).

This topic gives an overview of the various groups.

Concurrency
These defects are related to multitasking code.

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable or call a
nonreentrant standard library function without protection.

For the specific defects, see “Concurrency Defects” (Polyspace Bug Finder Access).

 Bug Finder Defect Groups

9-21

Command-Line Parameter: concurrency

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For
example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.
• A lock function is called twice without an intermediate call to an unlock function.

Critical sections protect shared variables from concurrent access. Polyspace expects
critical sections to follow a certain format. The critical section must lie between a call to a
lock function and a call to an unlock function.

For the specific defects, see “Concurrency Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: concurrency

Cryptography
These defects are related to incorrect use of cryptography routines from the OpenSSL
library. For instance:

• Use of cryptographically weak algorithms
• Absence of essential elements such as cipher key or initialization vector
• Wrong order of cryptographic operations

For the specific defects, see “Cryptography Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: cryptography

Data flow
These defects are errors relating to how information moves throughout your code. The
defects include:

• Dead or unreachable code
• Unused code

9 Configure Bug Finder Checkers

9-22

• Non-initialized information

For the specific defects, see “Data Flow Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: data_flow

Dynamic Memory
These defects are errors relating to memory usage when the memory is dynamically
allocated. The defects include:

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: dynamic_memory

Good Practice
These defects allow you to observe good coding practices. The defects by themselves
might not cause a crash, but they sometimes highlight more serious logic errors in your
code. The defects also make your code vulnerable to attacks and hard to maintain.

The defects include:

• Hard-coded constants such as buffer size and loop boundary
• Unused function parameters

For specific defects, see “Good Practice Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: good_practice

Numerical
These defects are errors relating to variables in your code; their values, data types, and
usage. The defects include:

• Mathematical operations

 Bug Finder Defect Groups

9-23

• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: numerical

Object Oriented
These defects are related to the object-oriented aspect of C++ programming. The defects
highlight class design issues or issues in the inheritance hierarchy.

The defects include:

• Data member not initialized or incorrectly initialized in constructor
• Incorrect overriding of base class methods
• Breaking of data encapsulation

For specific defects, see “Object Oriented Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: object_oriented

Programming
These defects are errors relating to programming syntax. These defects include:

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: programming

Resource Management
These defects are related to file handling. The defects include:

• Unclosed file stream

9 Configure Bug Finder Checkers

9-24

• Operations on a file stream after it is closed

For specific defects, see “Resource Management Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: resource_management

Static Memory
These defects are errors relating to memory usage when the memory is statically
allocated. The defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: static_memory

Security
These defects highlight places in your code which are vulnerable to hacking or other
security attacks. Many of these defects do not cause runtime errors, but instead point out
risky areas in your code. The defects include:

• Managing sensitive data
• Using dangerous or obsolete functions
• Generating random numbers
• Externally controlled paths and commands

For more details about specific defects, see “Security Defects” (Polyspace Bug Finder
Access).

Command-Line Parameter: security

Tainted data
These defects highlight elements in your code which are from unsecured sources.
Malicious attackers can use input data or paths to attack your program and cause

 Bug Finder Defect Groups

9-25

failures. These defects highlight elements in your code that are vulnerable. Defects
include:

• Use of tainted variables or pointers
• Externally controlled paths

For more details about specific defects, see “Tainted Data Defects” (Polyspace Bug Finder
Access).

Command-Line Parameter: tainted_data

See Also
Find defects (-checkers)

9 Configure Bug Finder Checkers

9-26

Polyspace Bug Finder Defects Checkers Enabled by
Default

When you launch a Bug Finder analysis, the default setting for Find defects (-
checkers) enables these defect checkers.

Defect Command-line Name
Absorption of float operand FLOAT_ABSORPTION
Accessing object with temporary
lifetime

TEMP_OBJECT_ACCESS

Alignment changed after memory
reallocation

ALIGNMENT_CHANGE

Alternating input and output from
a stream without flush or
positioning call

IO_INTERLEAVING

Array access out of bounds OUT_BOUND_ARRAY
Assertion ASSERT
Atomic load and store sequence
not atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed twice in
an expression

ATOMIC_VAR_ACCESS_TWICE

Base class assignment operator
not called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor not virtual DTOR_NOT_VIRTUAL
Buffer overflow from incorrect
string format specifier

STR_FORMAT_BUFFER_OVERFLOW

Call through non-prototyped
function pointer

UNPROTOTYPED_FUNC_CALL

Character value absorbed into EOF CHAR_EOF_CONFUSED
Closing a previously closed
resource

DOUBLE_RESOURCE_CLOSE

Conversion or deletion of
incomplete class pointer

INCOMPLETE_CLASS_PTR

 Polyspace Bug Finder Defects Checkers Enabled by Default

9-27

Defect Command-line Name
Copy constructor not called in
initialization list

MISSING_COPY_CTOR_CALL

Copy operation modifying source
operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race through standard
library function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of previously
deallocated pointer

DOUBLE_DEALLOCATION

Declaration mismatch DECL_MISMATCH
Destination buffer overflow in
string manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer underflow in
string manipulation

STRLIB_BUFFER_UNDERFLOW

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Environment pointer invalidated
by previous operation

INVALID_ENV_POINTER

Errno not reset MISSING_ERRNO_RESET
Exception caught by value EXCP_CAUGHT_BY_VALUE
Exception handler hidden by
previous handler

EXCP_HANDLER_HIDDEN

Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Format string specifiers and
arguments mismatch

STRING_FORMAT

Improper array initialization IMPROPER_ARRAY_INIT

9 Configure Bug Finder Checkers

9-28

Defect Command-line Name
Incompatible types prevent
overriding

VIRTUAL_FUNC_HIDING

Incorrect data type passed to
va_arg

VA_ARG_INCORRECT_TYPE

Incorrect pointer scaling BAD_PTR_SCALING
Incorrect type data passed to
va_start

VA_START_INCORRECT_TYPE

Incorrect use of offsetof in C++ OFFSETOF_MISUSE
Incorrect use of va_start VA_START_MISUSE
Inline constraint not respected INLINE_CONSTRAINT_NOT_RESPECTED
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Invalid assumptions about memory
organization

INVALID_MEMORY_ASSUMPTION

Invalid free of pointer BAD_FREE
Invalid use of standard library
floating point routine

FLOAT_STD_LIB

Invalid use of standard library
integer routine

INT_STD_LIB

Invalid use of standard library
memory routine

MEM_STD_LIB

Invalid use of standard library
routine

OTHER_STD_LIB

Invalid use of standard library
string routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Memory comparison of padding data MEMCMP_PADDING_DATA
Memory comparison of strings MEMCMP_STRINGS
Missing lock BAD_UNLOCK
Missing return statement MISSING_RETURN

 Polyspace Bug Finder Defects Checkers Enabled by Default

9-29

Defect Command-line Name
Missing unlock BAD_LOCK
Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a signal
handler

SIG_HANDLER_ERRNO_MISUSE

Misuse of sign-extended character
value

CHARACTER_MISUSE

Misuse of structure with flexible
array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISU
SE

Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Null pointer NULL_PTR
Object slicing OBJECT_SLICING
Opening previously opened
resource

DOUBLE_RESOURCE_OPEN

Partial override of overloaded
virtual functions

PARTIAL_OVERRIDE

Pointer access out of bounds OUT_BOUND_PTR
Pointer or reference to stack
variable leaving scope

LOCAL_ADDR_ESCAPE

Possible misuse of sizeof SIZEOF_MISUSE
Possibly unintended evaluation of
expression because of operator
precedence rules

OPERATOR_PRECEDENCE

Predefined macro used as an
object

MACRO_USED_AS_OBJECT

Preprocessor directive in macro
argument

PRE_DIRECTIVE_MACRO_ARG

Resource leak RESOURCE_LEAK
Return from computational
exception signal handler

SIG_HANDLER_COMP_EXCP_RETURN

9 Configure Bug Finder Checkers

9-30

Defect Command-line Name
Shared data access within signal
handler

SIG_HANDLER_SHARED_OBJECT

Side effect of expression ignored SIDE_EFFECT_IGNORED
Sign change integer conversion
overflow

SIGN_CHANGE

Signal call from within signal
handler

SIG_HANDLER_CALLING_SIGNAL

Standard function call with
incorrect arguments

STD_FUNC_ARG_MISMATCH

Stream argument with possibly
unintended side effects

STREAM_WITH_SIDE_EFFECT

Subtraction or comparison between
pointers to different arrays

PTR_TO_DIFF_ARRAY

Too many va_arg calls for current
argument list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Universal character name from
token concatenation

PRE_UCNAME_JOIN_TOKENS

Unreachable code UNREACHABLE
Unreliable cast of function
pointer

FUNC_CAST

Unreliable cast of pointer PTR_CAST
Unsigned integer conversion
overflow

UINT_CONV_OVFL

Use of automatic variable as
putenv-family function argument

PUTENV_AUTO_VAR

Use of previously closed resource CLOSED_RESOURCE_USE
Use of previously freed pointer FREED_PTR
Useless if USELESS_IF
Variable length array with
nonpositive size

NON_POSITIVE_VLA_SIZE

 Polyspace Bug Finder Defects Checkers Enabled by Default

9-31

Defect Command-line Name
Writing to const qualified object CONSTANT_OBJECT_WRITE
Writing to read-only resource READ_ONLY_RESOURCE_WRITE

9 Configure Bug Finder Checkers

9-32

Bug Finder Results Found in Fast Analysis Mode
In fast analysis mode, Bug Finder checks for a subset of defects and coding rules only.
The tables below list the results that can be found in a fast analysis. See also Use fast
analysis mode for Bug Finder (-fast-analysis).

Polyspace Bug Finder Defects
Static Memory

Name Description
Buffer overflow from incorrect string format
specifier
(str_format_buffer_overflow)

String format specifier causes buffer argument
of standard library functions to overflow

Unreliable cast of function pointer
(func_cast)

Function pointer cast to another function pointer
with different argument or return type

Unreliable cast of pointer
(ptr_cast)

Pointer implicitly cast to different data type

 Bug Finder Results Found in Fast Analysis Mode

9-33

Programming

Name Description
Copy of overlapping memory
(overlapping_copy)

Source and destination arguments of a copy
function have overlapping memory

Exception caught by value
(excp_caught_by_value)

catch statement accepts an object by value

Exception handler hidden by previous handler
(excp_handler_hidden)

catch statement is not reached because of an
earlier catch statement for the same exception

Format string specifiers and arguments
mismatch
(string_format)

String specifiers do not match corresponding
arguments

Improper array initialization
(improper_array_init)

Incorrect array initialization when using
initializers

Invalid use of == (equality) operator
(bad_equal_equal_use)

Equality operation in assignment statement

Invalid use of = (assignment) operator
(bad_equal_use)

Assignment in conditional statement

Invalid use of floating point operation
(bad_float_op)

Imprecise comparison of floating point variables

Missing null in string array
(missing_null_char)

String does not terminate with null character

Overlapping assignment
(overlapping_assign)

Memory overlap between left and right sides of
an assignment

Possibly unintended evaluation of expression
because of operator precedence rules
(operator_precedence)

Operator precedence rules cause unexpected
evaluation order in arithmetic expression

Unsafe conversion between pointer and integer
(bad_int_ptr_cast)

Misaligned or invalid results from conversions
between pointer and integer types

Wrong type used in sizeof
(ptr_sizeof_mismatch)

sizeof argument does not match pointed type

9 Configure Bug Finder Checkers

9-34

Data Flow

Name Description
Code deactivated by constant false condition
(deactivated_code)

Code segment deactivated by #if 0 directive or
if(0) condition

Missing return statement
(missing_return)

Function does not return value though return
type is not void

Static uncalled function
(uncalled_func)

Function with static scope not called in file

Variable shadowing
(var_shadowing)

Variable hides another variable of same name
with nested scope

 Bug Finder Results Found in Fast Analysis Mode

9-35

Object Oriented

Name Description
*this not returned in copy assignment operator
(return_not_ref_to_this)

operator= method does not return a pointer to
the current object

Base class assignment operator not called
(missing_base_assign_op_call)

Copy assignment operator does not call copy
assignment operators of base subobjects

Base class destructor not virtual
(dtor_not_virtual)

Class cannot behave polymorphically for deletion
of derived class objects

Copy constructor not called in initialization list
(missing_copy_ctor_call)

Copy constructor does not call copy constructors
of some members or base classes

Incompatible types prevent overriding
(virtual_func_hiding)

Derived class method hides a virtual base class
method instead of overriding it

Member not initialized in constructor
(non_init_member)

Constructor does not initialize some members of
a class

Missing explicit keyword
(missing_explicit_keyword)

Constructor missing the explicit specifier

Missing virtual inheritance
(missing_virtual_inheritance)

A base class is inherited virtually and
nonvirtually in the same hierarchy

Object slicing
(object_slicing)

Derived class object passed by value to function
with base class parameter

Partial override of overloaded virtual functions
(partial_override)

Class overrides fraction of inherited virtual
functions with a given name

Return of non const handle to encapsulated data
member
(breaking_data_encapsulation)

Method returns pointer or reference to internal
member of object

Self assignment not tested in operator
(missing_self_assign_test)

Copy assignment operator does not test for self-
assignment

Security

Name Description
Function pointer assigned with absolute address
(func_ptr_absolute_addr)

Constant expression is used as function address
is vulnerable to code injection

9 Configure Bug Finder Checkers

9-36

Good Practice

Name Description
Bitwise and arithmetic operation on the same
data
(bitwise_arith_mix)

Statement with mixed bitwise and arithmetic
operations

Delete of void pointer
(delete_of_void_ptr)

delete operates on a void* pointer pointing to
an object

Hard-coded buffer size
(hard_coded_buffer_size)

Size of memory buffer is a numerical value
instead of symbolic constant

Hard-coded loop boundary
(hard_coded_loop_boundary)

Loop boundary is a numerical value instead of
symbolic constant

Large pass-by-value argument
(pass_by_value)

Large argument passed by value between
functions

Line with more than one statement
(more_than_one_statement)

Multiple statements on a line

Missing break of switch case
(missing_switch_break)

No comments at the end of switch case without a
break statement

Missing reset of a freed pointer
(missing_freed_ptr_reset)

Pointer free not followed by a reset statement to
clear leftover data

Unused parameter
(unused_parameter)

Function prototype has parameters not read or
written in function body

MISRA C: 2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

 Bug Finder Results Found in Fast Analysis Mode

9-37

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer

scope, and therefore hide that identifier.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character values.
6.2 Signed and unsigned char type shall be used only for the storage and use of numeric

values.
6.3 typedefs that indicate size and signedness should be used in place of the basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

9 Configure Bug Finder Checkers

9-38

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible at both

the function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated.
8.3 For each function parameter the type given in the declaration and definition shall be

identical, and the return types shall also be identical.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a single

function.
8.8 An external object or function shall be declared in one file and only one file.
8.9 An identifier with external linkage shall have exactly one external definition.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated explicitly or

defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero initialization of

arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.

 Bug Finder Results Found in Fast Analysis Mode

9-39

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a different

underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a different
type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type that is
narrower and of the same signedness as the underlying type of the expression.

10.4 The value of a complex expression of float type may only be cast to narrower floating
type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type unsigned
char or unsigned short, the result shall be immediately cast to the underlying type
of the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

9 Configure Bug Finder Checkers

9-40

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any type other

than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type other

than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a different pointer

to object type.
11.5 A cast shall not be performed that removes any const or volatile qualification from

the type addressed by a pointer

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in expressions.
12.3 The sizeof operator should not be used on expressions that contain side effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean. Expression

that are effectively Boolean should not be used as operands to operators other than (&&,
|| or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is signed.
12.9 The unary minus operator shall not be applied to an expression whose underlying type is

unsigned.
12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with other

operators in an expression

 Bug Finder Results Found in Fast Analysis Mode

9-41

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean values.
13.2 Tests of a value against zero should be made explicit, unless the operand is effectively

Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of floating

type.
13.5 The three expressions of a for statement shall be concerned only with loop control.
13.6 Numeric variables being used within a for loop for iteration counting should not be

modified in the body of the loop.

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used for loop

termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement shall

be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The else

keyword shall be followed by either a compound statement, or another if statement.
14.10 All if else if constructs should contain a final else clause.

9 Configure Bug Finder Checkers

9-42

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype declaration.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty.

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

 Bug Finder Results Found in Fast Analysis Mode

9-43

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors directives

or comments.
19.2 Nonstandard characters should not occur in header file names in #include directives.
19.3 The #include directive shall be followed by either a <filename> or "filename"

sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero construct.
19.5 Macros shall not be #define-d and #undef-d within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing

directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be enclosed

in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use, except in

#ifdef and #ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## preprocessor operators in a single

macro definition.
19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file being

included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the

preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same file as

the #if or #ifdef directive to which they are related.

9 Configure Bug Finder Checkers

9-44

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be defined,

redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall not be

used.
20.11 The library functions abort, exit, getenv and system from library <stdlib.h> shall

not be used.
20.12 The time handling functions of library <time.h> shall not be used.

MISRA C: 2012 Rules
Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and constraints, and

shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

 Bug Finder Results Found in Fast Analysis Mode

9-45

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

Identifiers

Rule Description
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an outer

scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented in an

unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is "pointer to

const-qualified char".

9 Configure Bug Finder Checkers

9-46

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.4 A compatible declaration shall be visible when an object or function with external

linkage is defined.
8.5 An external object or function shall be declared once in one and only one file.
8.6 An identifier with external linkage shall have exactly one external definition.
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration constant

shall be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of the array

shall be specified explicitly.

 Bug Finder Results Found in Fast Analysis Mode

9-47

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in addition

and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower essential

type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are performed

shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential type.
10.6 The value of a composite expression shall not be assigned to an object with wider

essential type.
10.7 If a composite expression is used as one operand of an operator in which the usual

arithmetic conversions are performed then the other operand shall not have wider
essential type.

10.8 The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

9 Configure Bug Finder Checkers

9-48

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and any

other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to a

different object type.
11.4 A conversion should not be performed between a pointer to object and an integer type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer arithmetic

type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to by a

pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator should have

no other potential side effects other than that caused by the increment or decrement
operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which has

potential side effects.

 Bug Finder Results Found in Fast Analysis Mode

9-49

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or in any

block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate any

iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a compound

statement.
15.7 All if … else if constructs shall be terminated with an else statement.

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch

statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

9 Configure Bug Finder Checkers

9-50

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword between

the [].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

 Bug Finder Results Found in Fast Analysis Mode

9-51

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur in a

header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename\"

sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed in

parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0

or 1.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately be

followed by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself subject

to further macro replacement, shall only be used as an operand to these operators.
20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same file as

the #if, #ifdef or #ifndef directive to which they are related.

9 Configure Bug Finder Checkers

9-52

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved macro

name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall not be

used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

MISRA C++ 2008 Rules
Language Independent Issues

Rule Description
0-1-7 The value returned by a function having a non-void return type that is not an overloaded

operator shall always be used.
0-1-11 There shall be no unused parameters (named or unnamed) in non- virtual functions.
0-1-12 There shall be no unused parameters (named or unnamed) in the set of parameters for a

virtual function and all the functions that override it.
0-2-1 An object shall not be assigned to an overlapping object.

 Bug Finder Results Found in Fast Analysis Mode

9-53

General

Rule Description
1-0-1 All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating

Technical Corrigendum 1".

Lexical Conventions

Rule Description
2-3-1 Trigraphs shall not be used.
2-5-1 Digraphs should not be used.
2-7-1 The character sequence /* shall not be used within a C-style comment.
2-10-1 Different identifiers shall be typographically unambiguous.
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.
2-10-3 A typedef name (including qualification, if any) shall be a unique identifier.
2-10-4 A class, union or enum name (including qualification, if any) shall be a unique identifier.
2-10-6 If an identifier refers to a type, it shall not also refer to an object or a function in the

same scope.
2-13-1 Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.
2-13-2 Octal constants (other than zero) and octal escape sequences (other than "\0") shall not

be used.
2-13-3 A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.
2-13-4 Literal suffixes shall be upper case.
2-13-5 Narrow and wide string literals shall not be concatenated.

9 Configure Bug Finder Checkers

9-54

Basic Concepts

Rule Description
3-1-1 It shall be possible to include any header file in multiple translation units without

violating the One Definition Rule.
3-1-2 Functions shall not be declared at block scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-1 Objects or functions with external linkage shall be declared in a header file.
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage

class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes

its visibility.
3-9-1 The types used for an object, a function return type, or a function parameter shall be

token-for-token identical in all declarations and re-declarations.
3-9-2 Typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.

Standard Conversions

Rule Description
4-5-1 Expressions with type bool shall not be used as operands to built-in operators other than

the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator.

4-5-2 Expressions with type enum shall not be used as operands to built- in operators other
than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=.

4-5-3 Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator.

 Bug Finder Results Found in Fast Analysis Mode

9-55

Expressions

Rule Description
5-0-1 The value of an expression shall be the same under any order of evaluation that the

standard permits.
5-0-2 Limited dependence should be placed on C++ operator precedence rules in

expressions.
5-0-3 A cvalue expression shall not be implicitly converted to a different underlying type.
5-0-4 An implicit integral conversion shall not change the signedness of the underlying type.
5-0-5 There shall be no implicit floating-integral conversions.
5-0-6 An implicit integral or floating-point conversion shall not reduce the size of the

underlying type.
5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of the

underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the underlying type of

a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an underlying type of

unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

5-0-11 The plain char type shall only be used for the storage and use of character values.
5-0-12 signed char and unsigned char type shall only be used for the storage and use of

numeric values.
5-0-13 The condition of an if-statement and the condition of an iteration-statement shall have

type bool.
5-0-14 The first operand of a conditional-operator shall have type bool.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-0-20 Non-constant operands to a binary bitwise operator shall have the same underlying

type.
5-0-21 Bitwise operators shall only be applied to operands of unsigned underlying type.

9 Configure Bug Finder Checkers

9-56

Rule Description
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived class by

means of dynamic_cast.
5-2-3 Casts from a base class to a derived class should not be performed on polymorphic

types.
5-2-4 C-style casts (other than void casts) and functional notation casts (other than explicit

constructor calls) shall not be used.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or

reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type, including a

pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer type, either

directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
5-2-10 The increment (++) and decrement (--) operators should not be mixed with other

operators in an expression.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-2-12 An identifier with array type passed as a function argument shall not decay to a pointer.
5-3-1 Each operand of the ! operator, the logical && or the logical || operators shall have type

bool.
5-3-2 The unary minus operator shall not be applied to an expression whose underlying type is

unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-3-4 Evaluation of the operand to the sizeof operator shall not contain side effects.
5-8-1 The right hand operand of a shift operator shall lie between zero and one less than the

width in bits of the underlying type of the left hand operand.
5-14-1 The right hand operand of a logical && or || operator shall not contain side effects.
5-18-1 The comma operator shall not be used.
5-19-1 Evaluation of constant unsigned integer expressions should not lead to wrap-around.

 Bug Finder Results Found in Fast Analysis Mode

9-57

Statements

Rule Description
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-2-3 Before preprocessing, a null statement shall only occur on a line by itself; it may be

followed by a comment, provided that the first character following the null statement is
a white - space character.

6-3-1 The statement forming the body of a switch, while, do ... while or for statement shall be
a compound statement.

6-4-1 An if (condition) construct shall be followed by a compound statement. The else
keyword shall be followed by either a compound statement, or another if statement.

6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-3 A switch statement shall be a well-formed switch statement.
6-4-4 A switch-label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement.
6-4-5 An unconditional throw or break statement shall terminate every non - empty switch-

clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-4-7 The condition of a switch statement shall not have bool type.
6-4-8 Every switch statement shall have at least one case-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-5-5 A loop-control-variable other than the loop-counter shall not be modified within

condition or expression.
6-5-6 A loop-control-variable other than the loop-counter which is modified in statement shall

have type bool.

9 Configure Bug Finder Checkers

9-58

Rule Description
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-3 The continue statement shall only be used within a well-formed for loop.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.

Declarations

Rule Description
7-3-1 The global namespace shall only contain main, namespace declarations and extern "C"

declarations.
7-3-2 The identifier main shall not be used for a function other than the global function main.
7-3-3 There shall be no unnamed namespaces in header files.
7-3-4 using-directives shall not be used.
7-3-5 Multiple declarations for an identifier in the same namespace shall not straddle a using-

declaration for that identifier.
7-3-6 using-directives and using-declarations (excluding class scope or function scope using-

declarations) shall not be used in header files.
7-4-2 Assembler instructions shall only be introduced using the asm declaration.
7-4-3 Assembly language shall be encapsulated and isolated.

 Bug Finder Results Found in Fast Analysis Mode

9-59

Declarators

Rule Description
8-0-1 An init-declarator-list or a member-declarator-list shall consist of a single init-declarator

or member-declarator respectively.
8-3-1 Parameters in an overriding virtual function shall either use the same default arguments

as the function they override, or else shall not specify any default arguments.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-2 The identifiers used for the parameters in a re-declaration of a function shall be

identical to those in the declaration.
8-4-3 All exit paths from a function with non- void return type shall have an explicit return

statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero initialization of

arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.

Classes

Rule Description
9-3-1 const member functions shall not return non-const pointers or references to class-data.
9-3-2 Member functions shall not return non-const handles to class-data.
9-5-1 Unions shall not be used.
9-6-2 Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.
9-6-3 Bit-fields shall not have enum type.
9-6-4 Named bit-fields with signed integer type shall have a length of more than one bit.

9 Configure Bug Finder Checkers

9-60

Derived Classes

Rule Description
10-1-1 Classes should not be derived from virtual bases.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy.
10-2-1 All accessible entity names within a multiple inheritance hierarchy should be unique.
10-3-1 There shall be no more than one definition of each virtual function on each path through

the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.

Member Access Control

Rule Description
11-0-1 Member data in non- POD class types shall be private.

Special Member Functions

Rule Description
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-1-2 All constructors of a class should explicitly call a constructor for all of its immediate

base classes and all virtual base classes.
12-1-3 All constructors that are callable with a single argument of fundamental type shall be

declared explicit.
12-8-1 A copy constructor shall only initialize its base classes and the non- static members of

the class of which it is a member.
12-8-2 The copy assignment operator shall be declared protected or private in an abstract

class.

 Bug Finder Results Found in Fast Analysis Mode

9-61

Templates

Rule Description
14-5-2 A copy constructor shall be declared when there is a template constructor with a single

parameter that is a generic parameter.
14-5-3 A copy assignment operator shall be declared when there is a template assignment

operator with a parameter that is a generic parameter.
14-6-1 In a class template with a dependent base, any name that may be found in that

dependent base shall be referred to using a qualified-id or this->.
14-6-2 The function chosen by overload resolution shall resolve to a function declared

previously in the translation unit.
14-7-3 All partial and explicit specializations for a template shall be declared in the same file as

the declaration of their primary template.
14-8-1 Overloaded function templates shall not be explicitly specialized.
14-8-2 The viable function set for a function call should either contain no function

specializations, or only contain function specializations.

9 Configure Bug Finder Checkers

9-62

Exception Handling

Rule Description
15-0-2 An exception object should not have pointer type.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-2 NULL shall not be thrown explicitly.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-2 There should be at least one exception handler to catch all otherwise unhandled

exceptions
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).

 Bug Finder Results Found in Fast Analysis Mode

9-63

Preprocessing Directives

Rule Description
16-0-1 #include directives in a file shall only be preceded by other preprocessor directives or

comments.
16-0-2 Macros shall only be #define 'd or #undef 'd in the global namespace.
16-0-3 #undef shall not be used.
16-0-4 Function-like macros shall not be defined.
16-0-5 Arguments to a function-like macro shall not contain tokens that look like preprocessing

directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall be enclosed

in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,

except as operands to the defined operator.
16-0-8 If the # token appears as the first token on a line, then it shall be immediately followed

by a preprocessing token.
16-1-1 The defined preprocessor operator shall only be used in one of the two standard forms.
16-1-2 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if or #ifdef directive to which they are related.
16-2-1 The pre-processor shall only be used for file inclusion and include guards.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage class

specifiers.
16-2-3 Include guards shall be provided.
16-2-4 The ', ", /* or // characters shall not occur in a header file name.
16-2-5 The \ character should not occur in a header file name.
16-2-6 The #include directive shall be followed by either a <filename> or "filename" sequence.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro

definition.
16-3-2 The # and ## operators should not be used.
16-6-1 All uses of the #pragma directive shall be documented.
17-0-1 Reserved identifiers, macros and functions in the standard library shall not be defined,

redefined or undefined.

9 Configure Bug Finder Checkers

9-64

Rule Description
17-0-2 The names of standard library macros and objects shall not be reused.
17-0-5 The setjmp macro and the longjmp function shall not be used.

Language Support Library

Rule Description
18-0-1 The C library shall not be used.
18-0-2 The library functions atof, atoi and atol from library <cstdlib> shall not be used.
18-0-3 The library functions abort, exit, getenv and system from library <cstdlib> shall not be

used.
18-0-4 The time handling functions of library <ctime> shall not be used.
18-0-5 The unbounded functions of library <cstring> shall not be used.
18-2-1 The macro offsetof shall not be used.
18-4-1 Dynamic heap memory allocation shall not be used.
18-7-1 The signal handling facilities of <csignal> shall not be used.

Diagnostic Library

Rule Description
19-3-1 The error indicator errno shall not be used.

Input/Output Library

Rule Description
27-0-1 The stream input/output library <cstdio> shall not be used.

 Bug Finder Results Found in Fast Analysis Mode

9-65

CWE Coding Standard and Polyspace Results
Common Weakness Enumeration (CWE) is a dictionary of common software weakness
types that can occur in software architecture, design, code, or implementation. These
weaknesses can lead to security vulnerabilities.

CWE and Polyspace Bug Finder
The CWE dictionary assigns a unique identifier to each software weakness type. These
identifiers serve as a common language for describing software security weaknesses and
a standard for software security tools targeting these weaknesses. For more information,
see Common Weakness Enumeration.

Polyspace Bug Finder results can be mapped to CWE identifiers. Using Bug Finder, you
can check and document if your software has weaknesses listed in the CWE dictionary.
Bug Finder supports the following aspects of the CWE Compatibility and Effectiveness
Program:

• CWE Searchable: For each supported CWE identifier, you can see all instances in
your code that have weaknesses corresponding to the identifier.

• CWE Output: For each Polyspace Bug Finder defect:

• You can view the associated CWE identifier.
• You can report the associated CWE identifier.

Bug Finder results are mapped to CWE identifiers (IDs). Using the Bug Finder results,
you can evaluate your code against the CWE standard. For instance, CWE ID 119
(Improper restriction of operations within the bounds of a memory buffer) maps to the
Bug Finder defects, Array access out of bounds and Pointer access out of bounds.

For more information on the CWE Compatibility and Effectiveness Program, see CWE
Compatibility.

Find CWE IDs from Polyspace Results
Use the following workflow if you want to focus your Bug Finder analysis on the CWE
standard.

• Analysis: Check your code only for those Bug Finder defects that correspond to the
standard. Use the option Find defects (-checkers) with value CWE.

9 Configure Bug Finder Checkers

9-66

https://cwe.mitre.org/
https://cwe.mitre.org/compatible/
https://cwe.mitre.org/compatible/

• Results: If you enable only the defect checkers corresponding to the CWE standard,
you see only the defects that correspond to the standard. Fix or justify each defect.

Along with defects, you can see the CWE IDs mapped to each defect in the CWE ID
column on the Results List pane. If the column is not enabled by default, right-click
any column header and select CWE ID.

• Report: When you generate a report, choose the SecurityCWE template tailored for
the CWE standard. The report shows the CWE ID-s corresponding to each result.

Mapping Between CWE Identifiers and Polyspace Results
The following table lists the CWE IDs (version 2.8) addressed by Polyspace Bug Finder
with its corresponding defect checkers. Using Polyspace Bug Finder defect checkers, you
can check for 133 CWE IDs.

There are three types of CWE identifiers: Class, Base and Variant. Identifiers of type Class
define security weaknesses at an abstract level independent of a specific language or
technology, while identifiers of type Base and Variant are more concrete. On the other
hand, Polyspace Bug Finder results are designed to be specific so that users can have a
precise diagnosis of the defect in their code and understand the defect quickly. Therefore:

• The Bug Finder results are mapped to the specific identifiers of type Base and Variant
rather than the generic identifiers of type Class.

Only when a result covers more ground than a specific CWE identifier is the result
mapped to its more general parent type. For instance, the defect checker Array
access out of bounds covers many kinds of buffer overflows, while CWE-788 refers
only to “Access of Memory Location After End of Buffer”. Therefore, the defect checker
is mapped to its parent, CWE-119, which refers to “Improper Restriction of Operations
within the Bounds of a Memory Buffer”. However, to keep the mapping precise, an
attempt is made to map to specific CWE identifiers.

• Often, more than one Bug Finder result is mapped to a certain CWE identifier.

For instance, CWE-908 refers to “Use of Uninitialized Resource”. To highlights specific
kinds of uninitialized resources, Bug Finder has three different checkers: Member
not initialized in constructor, Non-initialized pointer, and Non-initialized
variable.

For mapping to the subsets CWE-658 and CWE-659, see “Mapping Between CWE-658 or
659 and Polyspace Results” on page 9-100.

 CWE Coding Standard and Polyspace Results

9-67

https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/908.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
15 External control of

system or
configuration setting

Host change using externally controlled
elements

Use of externally controlled environment
variable

20 Improper input
validation

Unsafe conversion from string to
numerical value

22 Improper Limitation
of a Pathname to a
Restricted Directory
('Path Traversal')

Vulnerable path manipulation

23 Relative path
traversal

Vulnerable path manipulation

36 Absolute path
traversal

Vulnerable path manipulation

67 Improper Handling
of Windows Device
Names

Inappropriate I/O operation on device
files

77 Improper
neutralization of
special elements
used in a command

Execution of externally controlled
command

Unsafe call to a system function
78 Improper

neutralization of
special elements
used in an OS
command

Execution of externally controlled
command

Unsafe call to a system function

88 Argument injection
or modification

Execution of externally controlled
command

Unsafe call to a system function

9 Configure Bug Finder Checkers

9-68

https://cwe.mitre.org/data/definitions/15.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html
https://cwe.mitre.org/data/definitions/67.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
114 Process control Command executed from externally

controlled path

Execution of a binary from a relative
path can be controlled by an external
actor

Execution of externally controlled
command

Library loaded from externally
controlled path

Load of library from a relative path can
be controlled by an external actor

119 Improper restriction
of operations within
the bounds of a
memory buffer

Array access out of bounds

Pointer access out of bounds

120 Buffer copy without
checking size of
input ('Classic buffer
overflow')

Invalid use of standard library memory
routine

Invalid use of standard library string
routine

Tainted NULL or non-null-terminated
string

121 Stack-based buffer
overflow

Array access with tainted index

Destination buffer overflow in string
manipulation

122 Heap-based buffer
overflow

Pointer dereference with tainted offset

 CWE Coding Standard and Polyspace Results

9-69

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
124 Buffer underwrite

('Buffer underflow')
Array access with tainted index

Buffer overflow from incorrect string
format specifier

Destination buffer underflow in string
manipulation

Pointer dereference with tainted offset
125 Out-of-bounds read Array access with tainted index

Buffer overflow from incorrect string
format specifier

Destination buffer overflow in string
manipulation

126 Buffer over-read Buffer overflow from incorrect string
format specifier

127 Buffer under-read Buffer overflow from incorrect string
format specifier

128 Wrap-around error Integer constant overflow

Tainted sign change conversion

Unsigned integer conversion overflow

Memory allocation with tainted size

Unsigned integer overflow

Tainted size of variable length array

Unsigned integer constant overflow

Integer overflow

Integer conversion overflow

9 Configure Bug Finder Checkers

9-70

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/128.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
129 Improper validation

of array index
Array access with tainted index

Pointer dereference with tainted offset
130 Improper handling of

length parameter
inconsistency

Mismatch between data length and size

131 Incorrect calculation
of buffer size

Pointer access out of bounds

Tainted sign change conversion

Unsigned integer conversion overflow

Memory allocation with tainted size

Unsigned integer overflow

Array access out of bounds

Tainted size of variable length array
134 Uncontrolled format

string
Tainted string format

135 Incorrect Calculation
of Multi-Byte String
Length

Destination buffer overflow in string
manipulation

Misuse of narrow or wide character
string

Unreliable cast of pointer
170 Improper null

termination
Missing null in string array

Misuse of readlink()

Tainted NULL or non-null-terminated
string

 CWE Coding Standard and Polyspace Results

9-71

https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/170.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
188 Reliance on data/

memory layout
Invalid assumptions about memory
organization

Memory comparison of padding data

Memory comparison of strings

Missing byte reordering when
transferring data

Pointer access out of bounds
189 Numeric Errors Absorption of float operand

Float conversion overflow

Float division by zero

Float overflow

Integer constant overflow

Integer conversion overflow

Integer division by zero

Integer overflow

Precision loss in integer to float
conversion

Shift of a negative value

Shift operation overflow

Tainted division operand

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow

9 Configure Bug Finder Checkers

9-72

https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/189.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
190 Integer overflow or

wraparound
Integer constant overflow

Integer conversion overflow

Integer precision exceeded

Integer overflow

Possible invalid operation on boolean
operand

Shift operation overflow

Tainted division operand

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
191 Integer underflow

(Wrap or
wraparound)

Integer constant overflow

Integer conversion overflow

Integer overflow

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow

 CWE Coding Standard and Polyspace Results

9-73

https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
192 Integer coercion

error
Tainted sign change conversion

Unsigned integer conversion overflow

Unsigned integer overflow

Sign change integer conversion overflow

Integer overflow

Integer conversion overflow
194 Unexpected sign

extension
Sign change integer conversion overflow

Tainted sign change conversion
195 Signed to unsigned

conversion error
Sign change integer conversion overflow

Tainted sign change conversion
196 Unsigned to signed

conversion error
Sign change integer conversion overflow

197 Numeric truncation
error

Integer conversion overflow

Float conversion overflow

Unsigned integer conversion overflow
198 Missing byte reordering when

transferring data
226 Sensitive information

uncleared before
release

Uncleared sensitive data in stack

9 Configure Bug Finder Checkers

9-74

https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/198.html
https://cwe.mitre.org/data/definitions/226.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
227 Improper fulfillment

of API contract
Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Invalid use of standard library memory
routine

Invalid use of standard library routine

Invalid use of standard library string
routine

Writing to const qualified object
240 Improper handling of

inconsistent
structural elements

Mismatch between data length and size

242 Use of inherently
dangerous function

Use of dangerous standard function

243 Creation of chroot
jail without changing
working directory

File manipulation after chroot without
chdir

244 Improper clearing of
heap memory before
release

Sensitive heap memory not cleared before
release

250 Execution with
unnecessary
privileges

Bad order of dropping privileges

Privilege drop not verified
251 Often misused: string

management
Destination buffer overflow in string
manipulation

252 Unchecked return
value

Returned value of a sensitive function
not checked

 CWE Coding Standard and Polyspace Results

9-75

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/240.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/251.html
https://cwe.mitre.org/data/definitions/252.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
253 Incorrect Check of

Function Return
Value

Errno not checked

Errno not reset

Returned value of a sensitive function
not checked

Unprotected dynamic memory allocation

Unsafe conversion from string to
numerical value

273 Improper check for
dropped privileges

Privilege drop not verified

9 Configure Bug Finder Checkers

9-76

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/273.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
310 Cryptographic issues Constant cipher key

Weak cipher mode

Context initialized incorrectly for
cryptographic operation

Nonsecure hash algorithm

Constant block cipher initialization
vector

Context initialized incorrectly for
digest operation

Missing parameters for key generation

Missing data for encryption, decryption
or signing operation

Nonsecure SSL/TLS protocol

Missing peer key

Missing cipher key

Missing cipher algorithm

Missing private key

Missing public key

Predictable block cipher initialization
vector

Nonsecure parameters for key generation

Predictable cipher key

Weak padding for RSA algorithm

 CWE Coding Standard and Polyspace Results

9-77

https://cwe.mitre.org/data/definitions/310.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
Nonsecure RSA public exponent

Missing padding for RSA algorithm

Missing blinding for RSA algorithm

Incorrect key for cryptographic
algorithm

Missing block cipher initialization
vector

Weak cipher algorithm

Incompatible padding for RSA algorithm
operation

311 Missing encryption
of sensitive data

Missing cipher final step

Missing cipher data to process
312 Cleartext Storage of

Sensitive Information
Sensitive heap memory not cleared before
release

Uncleared sensitive data in stack
316 Cleartext Storage of

Sensitive Information
in Memory

Sensitive heap memory not cleared before
release

Uncleared sensitive data in stack
320 Key management

errors
Constant cipher key

Missing peer key

Missing cipher key

Missing private key

Missing public key
321 Use of hard-coded

cryptographic key
Constant cipher key

9 Configure Bug Finder Checkers

9-78

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
325 Missing required

cryptographic step
Missing block cipher initialization
vector

Missing cipher algorithm

Missing cipher data to process

Missing cipher final step

Missing cipher key

Weak cipher algorithm

Weak cipher mode

Context initialized incorrectly for
cryptographic operation

Missing parameters for key generation

Missing data for encryption, decryption
or signing operation

Incorrect key for cryptographic
algorithm

 CWE Coding Standard and Polyspace Results

9-79

https://cwe.mitre.org/data/definitions/325.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
326 Inadequate

encryption strength
Weak cipher algorithm

Constant cipher key

Weak cipher mode

Constant block cipher initialization
vector

Nonsecure parameters for key generation

Predictable cipher key

Weak padding for RSA algorithm

Nonsecure RSA public exponent

Missing padding for RSA algorithm

Missing blinding for RSA algorithm

Missing block cipher initialization
vector

327 Use of a broken or
risky cryptographic
algorithm

Unsafe standard encryption function

Weak cipher algorithm

Weak cipher mode

Nonsecure hash algorithm

Nonsecure SSL/TLS protocol

Nonsecure parameters for key generation

Weak padding for RSA algorithm

Nonsecure RSA public exponent

Missing padding for RSA algorithm

9 Configure Bug Finder Checkers

9-80

https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
328 Reversible one-way

hash
Nonsecure hash algorithm

329 Not using a random
IV with CBC mode

Missing block cipher initialization
vector

Predictable block cipher initialization
vector

Constant block cipher initialization
vector

330 Use of insufficiently
random values

Deterministic random output from
constant seed

Predictable random output from
predictable seed

Vulnerable pseudo-random number
generator

Predictable block cipher initialization
vector

Predictable cipher key
336 Same seed in PRNG Deterministic random output from

constant seed
337 Predictable seed in

PRNG
Predictable random output from
predictable seed

338 Use of
cryptographically
weak pseudo-random
number generator
(PRNG)

Vulnerable pseudo-random number
generator

Predictable block cipher initialization
vector

Predictable cipher key

 CWE Coding Standard and Polyspace Results

9-81

https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/336.html
https://cwe.mitre.org/data/definitions/337.html
https://cwe.mitre.org/data/definitions/338.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
353 Missing Support for

Integrity Check
Context initialized incorrectly for
digest operation

Nonsecure hash algorithm
354 Improper Validation

of Integrity Check
Value

Context initialized incorrectly for
digest operation

362 Concurrent
execution using
shared resource with
improper
synchronization
('Race Condition')

File descriptor exposure to child
process

Opening previously opened resource

364 Signal handler race
condition

Shared data access within signal handler

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

366 Race condition
within a thread

Data race

Data race including atomic operations

Data race through standard library
function call

367 Time-of-check time-
of-use (TOCTOU)
race condition

File access between time of check and
use (TOCTOU)

9 Configure Bug Finder Checkers

9-82

https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/354.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/367.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
369 Divide by zero Float division by zero

Integer division by zero

Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Tainted division operand

Tainted modulo operand
372 Incomplete internal

state distinction
Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for
digest operation

Missing parameters for key generation

Missing data for encryption, decryption
or signing operation

Inconsistent cipher operations

Missing cipher data to process

Incompatible padding for RSA algorithm
operation

Missing cipher final step
375 Returning a mutable

object to an
untrusted caller

Return of non const handle to
encapsulated data member

377 Insecure temporary
file

Use of non-secure temporary file

 CWE Coding Standard and Polyspace Results

9-83

https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/377.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
387 Signal errors Return from computational exception

signal handler

Signal call from within signal handler

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

391 Unchecked error
condition

Errno not checked

398 Indicator of poor
code quality

Write without a further read

401 Improper release of
memory before
removing last
reference

Memory leak

Thread-specific memory leak

404 Improper resource
shutdown or release

Invalid deletion of pointer

Invalid free of pointer

Memory leak

Mismatched alloc/dealloc functions on
Windows

Thread-specific memory leak

9 Configure Bug Finder Checkers

9-84

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
413 Improper Resource

Locking
Data race

Data race including atomic operations

Data race through standard library
function call

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

Opening previously opened resource

Shared data access within signal handler
415 Double free Deallocation of previously deallocated

pointer

Missing reset of a freed pointer
416 Use after free Missing reset of a freed pointer

Use of previously freed pointer
426 Untrusted search

path
Command executed from externally
controlled path

Library loaded from externally
controlled path

 CWE Coding Standard and Polyspace Results

9-85

https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/426.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
427 Uncontrolled search

path element
Execution of a binary from a relative
path can be controlled by an external
actor

Library loaded from externally
controlled path

Load of library from a relative path can
be controlled by an external actor

Use of externally controlled environment
variable

456 Missing initialization
of a variable

Errno not reset

Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
457 Use of uninitialized

variable
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
465 Pointer Issues Unsafe conversion between pointer and

integer
466 Return of pointer

value outside of
expected range

Array access out of bounds

Pointer access out of bounds

Unsafe conversion between pointer and
integer

467 Use of sizeof() on a
pointer type

Possible misuse of sizeof

Wrong type used in sizeof
468 Incorrect pointer

scaling
Incorrect pointer scaling

9 Configure Bug Finder Checkers

9-86

https://cwe.mitre.org/data/definitions/427.html
https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/468.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
469 Use of pointer

subtraction to
determine size

Subtraction or comparison between
pointers to different arrays

471 Modification of
assumed-immutable
data

Writing to const qualified object

474 Use of function with
inconsistent
implementations

Signal call from within signal handler

Use of obsolete standard function
475 Undefined behavior

for input to API
Copy of overlapping memory

476 NULL pointer
dereference

Null pointer

Tainted NULL or non-null-terminated
string

477 Use of obsolete
functions

Use of obsolete standard function

478 Missing default case
in switch statement

Missing case for switch condition

479 Signal handler use of
a non-reentrant
function

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

480 Use of incorrect
operator

Invalid use of == (equality) operator

Invalid use of = (assignment) operator
481 Assigning instead of

comparing
Invalid use of = (assignment) operator

482 Comparing instead of
assigning

Invalid use of == (equality) operator

484 Omitted break
statement in switch

Missing break of switch case

 CWE Coding Standard and Polyspace Results

9-87

https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/474.html
https://cwe.mitre.org/data/definitions/475.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/477.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html
https://cwe.mitre.org/data/definitions/482.html
https://cwe.mitre.org/data/definitions/484.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
522 Insufficiently

Protected
Credentials

Constant cipher key

Nonsecure hash algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Nonsecure SSL/TLS protocol

Unsafe standard encryption function
532 Information exposure

through log files
Sensitive data printed out

534 Information exposure
through debug log
files

Sensitive data printed out

535 Information exposure
through shell error
message

Sensitive data printed out

547 Use of hard-coded,
security-relevant
constants

Hard coded buffer size

Hard coded loop boundary
558 Use of getlogin() in

multithreaded
application

Unsafe standard function

560 Use of umask() with
chmod-style
argument

Umask used with chmod-style arguments

561 Dead code Dead code

Static uncalled function

Unreachable code

9 Configure Bug Finder Checkers

9-88

https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/560.html
https://cwe.mitre.org/data/definitions/561.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
562 Return of stack

variable address
Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-
family function argument

573 Improper following
of specification by
caller

Missing cipher algorithm

Missing cipher data to process

Missing cipher final step

Missing cipher key

Modification of internal buffer returned
from nonreentrant standard function

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for
digest operation

Missing parameters for key generation

Missing data for encryption, decryption
or signing operation

Missing peer key

Missing private key

Missing public key

Missing blinding for RSA algorithm

Incorrect key for cryptographic
algorithm

Incompatible padding for RSA algorithm
operation

 CWE Coding Standard and Polyspace Results

9-89

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/573.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
587 Assignment of a fixed

address to a pointer
Unsafe conversion between pointer and
integer

Function pointer assigned with absolute
address

590 Free of memory not
on the heap

Invalid free of pointer

606 Unchecked input for
loop condition

Loop bounded with tainted value

628 Function call with
incorrectly specified
arguments

Bad file access mode or status

Copy of overlapping memory

Invalid va_list argument

Modification of internal buffer returned
from nonreentrant standard function

Standard function call with incorrect
arguments

658 See “Mapping Between CWE-658 or 659 and Polyspace Results” on page 9-
100.

659 See “Mapping Between CWE-658 or 659 and Polyspace Results” on page 9-
100.

663 Use of a non-
reentrant function in
a concurrent context

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

Unsafe standard encryption function

Unsafe standard function

9 Configure Bug Finder Checkers

9-90

https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/590.html
https://cwe.mitre.org/data/definitions/606.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/659.html
https://cwe.mitre.org/data/definitions/663.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
664 Improper control of a

resource through its
lifetime

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for
digest operation

Missing peer key

Missing cipher key

Missing private key

Missing public key

Inconsistent cipher operations

Missing cipher data to process

Incorrect key for cryptographic
algorithm

Incompatible padding for RSA algorithm
operation

Missing cipher final step
665 Improper

initialization
Call to memset with unintended value

Improper array initialization

Overlapping assignment

Use of memset with size argument zero
666 Operation on

resource in wrong
phase of lifetime

Incorrect order of network connection
operations

 CWE Coding Standard and Polyspace Results

9-91

https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/665.html
https://cwe.mitre.org/data/definitions/666.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
667 Improper locking Blocking operation while holding lock

Missing unlock

Destruction of locked mutex
672 Operation on a

resource after
expiration or release

Use of previously closed resource

Closing a previously closed resource
675 Duplicate operations

on resource
Opening previously opened resource

676 Use of potentially
dangerous function

Unsafe conversion from string to
numerical value

Use of dangerous standard function
681 Incorrect conversion

between numeric
types

Float conversion overflow

Precision loss in integer to float
conversion

682 Incorrect calculation Absorption of float operand

Float overflow

Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Tainted modulo operand

Bitwise operation on negative value

Use of plain char type for numerical
value

683 Function Call With
Incorrect Order of
Arguments

Call to memset with unintended value

Format string specifiers and arguments
mismatch

9 Configure Bug Finder Checkers

9-92

https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/675.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/683.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
685 Function call with

incorrect number of
arguments

Declaration mismatch

Format string specifiers and arguments
mismatch

Standard function call with incorrect
arguments

Too many va_arg calls for current
argument list

686 Function call with
incorrect argument
type

Bad file access mode or status

Declaration mismatch

Format string specifiers and arguments
mismatch

Incorrect data type passed to va_arg

Standard function call with incorrect
arguments

Use of automatic variable as putenv-
family function argument

Writing to const qualified object
687 Function call with

incorrectly specified
argument value

Copy of overlapping memory

Standard function call with incorrect
arguments

Variable length array with nonpositive
size

 CWE Coding Standard and Polyspace Results

9-93

https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
690 Unchecked return

value to null pointer
dereference

Invalid use of standard library memory
routine

Use of tainted pointer

Null pointer

Returned value of a sensitive function
not checked

Invalid use of standard library string
routine

Unprotected dynamic memory allocation

Tainted NULL or non-null-terminated
string

Standard function call with incorrect
arguments

Invalid use of standard library routine
691 Insufficient control

flow management
Use of setjmp/longjmp

693 Protection
mechanism failure

Nonsecure SSL/TLS protocol

696 Incorrect behavior
order

Bad order of dropping privileges

703 Improper check or
handling of
exceptional
conditions

Errno not reset

Misuse of errno

9 Configure Bug Finder Checkers

9-94

https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/691.html
https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/696.html
https://cwe.mitre.org/data/definitions/703.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
704 Incorrect type

conversion or cast
Character value absorbed into EOF

Qualifier removed in conversion

Precision loss in integer to float
conversion

Misuse of sign-extended character value

Unreliable cast of pointer

Wrong allocated object size for cast
705 Incorrect control

flow scoping
Abnormal termination of exit handler

710 Coding standard
violation

Bitwise and arithmetic operation on the
same data

732 Incorrect permission
assignment for
critical resource

Vulnerable permission assignments

754 Improper check for
unusual or
exceptional
conditions

Returned value of a sensitive function
not checked

755 Improper handling of
exceptional
conditions

Exception handler hidden by previous
handler

758 Reliance on
undefined,
unspecified, or
implementation-
defined behavior

Unsafe conversion between pointer and
integer

Use of plain char type for numerical
value

Bitwise operation on negative value
762 Mismatched memory

management
routines

Invalid free of pointer

Mismatched alloc/dealloc functions on
Windows

 CWE Coding Standard and Polyspace Results

9-95

https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/705.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/755.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/762.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
764 Multiple locks of a

critical resource
Double lock

765 Multiple unlocks of a
critical resource

Double unlock

767 Access to critical
private variable via
public method

Return of non const handle to
encapsulated data member

770 Allocation of
resources without
limits or throttling

Tainted size of variable length array

772 Missing release of
resource after
effective lifetime

Resource leak

780 Use of rsa algorithm
without oaep

Weak padding for RSA algorithm

Missing padding for RSA algorithm
783 Operator precedence

logic error
Possibly unintended evaluation of
expression because of operator
precedence rules

785 Use of path
manipulation
function without
maximum-sized
buffer

Use of path manipulation function
without maximum sized buffer checking

786 Access of memory
location before start
of buffer

Destination buffer underflow in string
manipulation

787 Out-of-bounds write Destination buffer overflow in string
manipulation

Destination buffer underflow in string
manipulation

9 Configure Bug Finder Checkers

9-96

https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/765.html
https://cwe.mitre.org/data/definitions/767.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/780.html
https://cwe.mitre.org/data/definitions/783.html
https://cwe.mitre.org/data/definitions/785.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
789 Uncontrolled

memory allocation
Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
805 Buffer access with

incorrect length
value

Hard-coded object size used to
manipulate memory

822 Untrusted pointer
dereference

Tainted NULL or non-null-terminated
string

Use of tainted pointer
823 Use of out-of-range

pointer offset
Pointer access out of bounds

Pointer dereference with tainted offset
824 Access of

uninitialized pointer
Non-initialized pointer

825 Expired Pointer
Dereference

Accessing object with temporary lifetime

Deallocation of previously deallocated
pointer

Environment pointer invalidated by
previous operation

Missing reset of a freed pointer

Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-
family function argument

Use of previously freed pointer

 CWE Coding Standard and Polyspace Results

9-97

https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/822.html
https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/824.html
https://cwe.mitre.org/data/definitions/825.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
826 Premature release of

resource during
expected lifetime

Closing a previously closed resource

Destruction of locked mutex

Use of previously closed resource
828 Signal handler with

functionality that is
not asynchronous-
safe

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

832 Unlock of a resource
that is not locked

Missing lock

833 Deadlock Deadlock
843 Access of resource

using incompatible
type ('Type
confusion')

Unreliable cast of pointer

872 CERT C++ Secure
Coding Section 04 -
Integers (INT)

Invalid use of standard library integer
routine

873 CERT C++ Secure
Coding Section 05 -
Floating point
arithmetic (FLP)

Absorption of float operand

Floating point comparison with equality
operators

Invalid use of standard library floating
point routine

Float overflow
908 Use of uninitialized

resource
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable

9 Configure Bug Finder Checkers

9-98

https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/828.html
https://cwe.mitre.org/data/definitions/832.html
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/872.html
https://cwe.mitre.org/data/definitions/873.html
https://cwe.mitre.org/data/definitions/908.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
910 Use of expired file

descriptor
Use of previously closed resource

Closing a previously closed resource

Standard function call with incorrect
arguments

922 Insecure Storage of
Sensitive Information

File manipulation after chroot without
chdir

Umask used with chmod-style arguments

Use of non-secure temporary file

Vulnerable permission assignments

 CWE Coding Standard and Polyspace Results

9-99

https://cwe.mitre.org/data/definitions/910.html
https://cwe.mitre.org/data/definitions/922.html

Mapping Between CWE-658 or 659 and Polyspace
Results

CWE-658: Weaknesses in Software Written in C
CWE-658 is a subset of CWE IDs found in C programs that are not common to all
languages. See CWE-658.

The following table lists the CWE IDs (version 2.8) from this subset that are addressed by
Polyspace Bug Finder, with its corresponding defect checkers.

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
119 Improper restriction

of operations within
the bounds of a
memory buffer

Array access out of bounds

Pointer access out of bounds

120 Buffer copy without
checking size of
input ('Classic buffer
overflow')

Invalid use of standard library memory
routine

Invalid use of standard library string
routine

Tainted NULL or non-null-terminated
string

121 Stack-based buffer
overflow

Array access with tainted index

Destination buffer overflow in string
manipulation

122 Heap-based buffer
overflow

Pointer dereference with tainted offset

9 Configure Bug Finder Checkers

9-100

https://cwe.mitre.org/data/lists/658.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
124 Buffer underwrite

('Buffer underflow')
Array access with tainted index

Buffer overflow from incorrect string
format specifier

Destination buffer underflow in string
manipulation

Pointer dereference with tainted offset
125 Out-of-bounds read Array access with tainted index

Buffer overflow from incorrect string
format specifier

Destination buffer overflow in string
manipulation

126 Buffer over-read Buffer overflow from incorrect string
format specifier

127 Buffer under-read Buffer overflow from incorrect string
format specifier

128 Wrap-around error Integer constant overflow

Tainted sign change conversion

Unsigned integer conversion overflow

Memory allocation with tainted size

Unsigned integer overflow

Tainted size of variable length array

Unsigned integer constant overflow

Integer overflow

Integer conversion overflow

 Mapping Between CWE-658 or 659 and Polyspace Results

9-101

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/128.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
129 Improper validation

of array index
Array access with tainted index

Pointer dereference with tainted offset
130 Improper handling of

length parameter
inconsistency

Mismatch between data length and size

131 Incorrect calculation
of buffer size

Pointer access out of bounds

Tainted sign change conversion

Unsigned integer conversion overflow

Memory allocation with tainted size

Unsigned integer overflow

Array access out of bounds

Tainted size of variable length array
134 Uncontrolled format

string
Tainted string format

135 Incorrect Calculation
of Multi-Byte String
Length

Destination buffer overflow in string
manipulation

Misuse of narrow or wide character
string

Unreliable cast of pointer
170 Improper null

termination
Missing null in string array

Misuse of readlink()

Tainted NULL or non-null-terminated
string

9 Configure Bug Finder Checkers

9-102

https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/170.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
188 Reliance on data/

memory layout
Invalid assumptions about memory
organization

Memory comparison of padding data

Memory comparison of strings

Missing byte reordering when
transferring data

Pointer access out of bounds
191 Integer underflow

(Wrap or
wraparound)

Integer constant overflow

Integer conversion overflow

Integer overflow

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
192 Integer coercion

error
Tainted sign change conversion

Unsigned integer conversion overflow

Unsigned integer overflow

Sign change integer conversion overflow

Integer overflow

Integer conversion overflow
194 Unexpected sign

extension
Sign change integer conversion overflow

Tainted sign change conversion
195 Signed to unsigned

conversion error
Sign change integer conversion overflow

Tainted sign change conversion

 Mapping Between CWE-658 or 659 and Polyspace Results

9-103

https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
196 Unsigned to signed

conversion error
Sign change integer conversion overflow

197 Numeric truncation
error

Integer conversion overflow

Float conversion overflow

Unsigned integer conversion overflow
242 Use of inherently

dangerous function
Use of dangerous standard function

243 Creation of chroot
jail without changing
working directory

File manipulation after chroot without
chdir

244 Improper clearing of
heap memory before
release

Sensitive heap memory not cleared before
release

362 Concurrent
execution using
shared resource with
improper
synchronization
('Race Condition')

File descriptor exposure to child
process

Opening previously opened resource

364 Signal handler race
condition

Shared data access within signal handler

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

366 Race condition
within a thread

Data race

Data race including atomic operations

Data race through standard library
function call

9 Configure Bug Finder Checkers

9-104

https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/366.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
375 Returning a mutable

object to an
untrusted caller

Return of non const handle to
encapsulated data member

401 Improper release of
memory before
removing last
reference

Memory leak

Thread-specific memory leak

415 Double free Deallocation of previously deallocated
pointer

Missing reset of a freed pointer
416 Use after free Missing reset of a freed pointer

Use of previously freed pointer
457 Use of uninitialized

variable
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
466 Return of pointer

value outside of
expected range

Array access out of bounds

Pointer access out of bounds

Unsafe conversion between pointer and
integer

467 Use of sizeof() on a
pointer type

Possible misuse of sizeof

Wrong type used in sizeof
468 Incorrect pointer

scaling
Incorrect pointer scaling

469 Use of pointer
subtraction to
determine size

Subtraction or comparison between
pointers to different arrays

474 Use of function with
inconsistent
implementations

Signal call from within signal handler

Use of obsolete standard function

 Mapping Between CWE-658 or 659 and Polyspace Results

9-105

https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/474.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
476 NULL pointer

dereference
Null pointer

Tainted NULL or non-null-terminated
string

478 Missing default case
in switch statement

Missing case for switch condition

479 Signal handler use of
a non-reentrant
function

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

480 Use of incorrect
operator

Invalid use of == (equality) operator

Invalid use of = (assignment) operator
481 Assigning instead of

comparing
Invalid use of = (assignment) operator

482 Comparing instead of
assigning

Invalid use of == (equality) operator

484 Omitted break
statement in switch

Missing break of switch case

558 Use of getlogin() in
multithreaded
application

Unsafe standard function

560 Use of umask() with
chmod-style
argument

Umask used with chmod-style arguments

562 Return of stack
variable address

Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-
family function argument

9 Configure Bug Finder Checkers

9-106

https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html
https://cwe.mitre.org/data/definitions/482.html
https://cwe.mitre.org/data/definitions/484.html
https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/560.html
https://cwe.mitre.org/data/definitions/562.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
587 Assignment of a fixed

address to a pointer
Unsafe conversion between pointer and
integer

Function pointer assigned with absolute
address

676 Use of potentially
dangerous function

Unsafe conversion from string to
numerical value

Use of dangerous standard function
685 Function call with

incorrect number of
arguments

Declaration mismatch

Format string specifiers and arguments
mismatch

Standard function call with incorrect
arguments

Too many va_arg calls for current
argument list

 Mapping Between CWE-658 or 659 and Polyspace Results

9-107

https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/685.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
690 Unchecked return

value to null pointer
dereference

Invalid use of standard library memory
routine

Use of tainted pointer

Null pointer

Returned value of a sensitive function
not checked

Invalid use of standard library string
routine

Unprotected dynamic memory allocation

Tainted NULL or non-null-terminated
string

Standard function call with incorrect
arguments

Invalid use of standard library routine
704 Incorrect type

conversion or cast
Character value absorbed into EOF

Qualifier removed in conversion

Precision loss in integer to float
conversion

Misuse of sign-extended character value

Unreliable cast of pointer

Wrong allocated object size for cast
762 Mismatched memory

management
routines

Invalid free of pointer

Mismatched alloc/dealloc functions on
Windows

9 Configure Bug Finder Checkers

9-108

https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/762.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
783 Operator precedence

logic error
Possibly unintended evaluation of
expression because of operator
precedence rules

785 Use of path
manipulation
function without
maximum-sized
buffer

Use of path manipulation function
without maximum sized buffer checking

789 Uncontrolled
memory allocation

Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
805 Buffer access with

incorrect length
value

Hard-coded object size used to
manipulate memory

843 Access of resource
using incompatible
type ('Type
confusion')

Unreliable cast of pointer

910 Use of expired file
descriptor

Use of previously closed resource

Closing a previously closed resource

Standard function call with incorrect
arguments

CWE-659: Weaknesses in Software Written in C++
CWE-659 is a subset of CWE IDs found in C++ programs that are not common to all
languages. See CWE-659.

The following table lists the CWE IDs (version 2.8) from this subset that are addressed by
Polyspace Bug Finder, with its corresponding defect checkers.

 Mapping Between CWE-658 or 659 and Polyspace Results

9-109

https://cwe.mitre.org/data/definitions/783.html
https://cwe.mitre.org/data/definitions/785.html
https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/910.html
https://cwe.mitre.org/data/lists/659.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
119 Improper restriction

of operations within
the bounds of a
memory buffer

Array access out of bounds

Pointer access out of bounds

120 Buffer copy without
checking size of
input ('Classic buffer
overflow')

Invalid use of standard library memory
routine

Invalid use of standard library string
routine

Tainted NULL or non-null-terminated
string

121 Stack-based buffer
overflow

Array access with tainted index

Destination buffer overflow in string
manipulation

122 Heap-based buffer
overflow

Pointer dereference with tainted offset

124 Buffer underwrite
('Buffer underflow')

Array access with tainted index

Buffer overflow from incorrect string
format specifier

Destination buffer underflow in string
manipulation

Pointer dereference with tainted offset
125 Out-of-bounds read Array access with tainted index

Buffer overflow from incorrect string
format specifier

Destination buffer overflow in string
manipulation

126 Buffer over-read Buffer overflow from incorrect string
format specifier

9 Configure Bug Finder Checkers

9-110

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
127 Buffer under-read Buffer overflow from incorrect string

format specifier
128 Wrap-around error Integer constant overflow

Tainted sign change conversion

Unsigned integer conversion overflow

Memory allocation with tainted size

Unsigned integer overflow

Tainted size of variable length array

Unsigned integer constant overflow

Integer overflow

Integer conversion overflow
129 Improper validation

of array index
Array access with tainted index

Pointer dereference with tainted offset
130 Improper handling of

length parameter
inconsistency

Mismatch between data length and size

131 Incorrect calculation
of buffer size

Pointer access out of bounds

Tainted sign change conversion

Unsigned integer conversion overflow

Memory allocation with tainted size

Unsigned integer overflow

Array access out of bounds

Tainted size of variable length array

 Mapping Between CWE-658 or 659 and Polyspace Results

9-111

https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/131.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
134 Uncontrolled format

string
Tainted string format

135 Incorrect Calculation
of Multi-Byte String
Length

Destination buffer overflow in string
manipulation

Misuse of narrow or wide character
string

Unreliable cast of pointer
170 Improper null

termination
Missing null in string array

Misuse of readlink()

Tainted NULL or non-null-terminated
string

188 Reliance on data/
memory layout

Invalid assumptions about memory
organization

Memory comparison of padding data

Memory comparison of strings

Missing byte reordering when
transferring data

Pointer access out of bounds
191 Integer underflow

(Wrap or
wraparound)

Integer constant overflow

Integer conversion overflow

Integer overflow

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow

9 Configure Bug Finder Checkers

9-112

https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/191.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
192 Integer coercion

error
Tainted sign change conversion

Unsigned integer conversion overflow

Unsigned integer overflow

Sign change integer conversion overflow

Integer overflow

Integer conversion overflow
194 Unexpected sign

extension
Sign change integer conversion overflow

Tainted sign change conversion
195 Signed to unsigned

conversion error
Sign change integer conversion overflow

Tainted sign change conversion
196 Unsigned to signed

conversion error
Sign change integer conversion overflow

197 Numeric truncation
error

Integer conversion overflow

Float conversion overflow

Unsigned integer conversion overflow
242 Use of inherently

dangerous function
Use of dangerous standard function

243 Creation of chroot
jail without changing
working directory

File manipulation after chroot without
chdir

244 Improper clearing of
heap memory before
release

Sensitive heap memory not cleared before
release

 Mapping Between CWE-658 or 659 and Polyspace Results

9-113

https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/244.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
362 Concurrent

execution using
shared resource with
improper
synchronization
('Race Condition')

File descriptor exposure to child
process

Opening previously opened resource

364 Signal handler race
condition

Shared data access within signal handler

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

366 Race condition
within a thread

Data race

Data race including atomic operations

Data race through standard library
function call

375 Returning a mutable
object to an
untrusted caller

Return of non const handle to
encapsulated data member

401 Improper release of
memory before
removing last
reference

Memory leak

Thread-specific memory leak

415 Double free Deallocation of previously deallocated
pointer

Missing reset of a freed pointer
416 Use after free Missing reset of a freed pointer

Use of previously freed pointer

9 Configure Bug Finder Checkers

9-114

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
457 Use of uninitialized

variable
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
466 Return of pointer

value outside of
expected range

Array access out of bounds

Pointer access out of bounds

Unsafe conversion between pointer and
integer

467 Use of sizeof() on a
pointer type

Possible misuse of sizeof

Wrong type used in sizeof
468 Incorrect pointer

scaling
Incorrect pointer scaling

469 Use of pointer
subtraction to
determine size

Subtraction or comparison between
pointers to different arrays

476 NULL pointer
dereference

Null pointer

Tainted NULL or non-null-terminated
string

478 Missing default case
in switch statement

Missing case for switch condition

479 Signal handler use of
a non-reentrant
function

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

480 Use of incorrect
operator

Invalid use of == (equality) operator

Invalid use of = (assignment) operator
481 Assigning instead of

comparing
Invalid use of = (assignment) operator

 Mapping Between CWE-658 or 659 and Polyspace Results

9-115

https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
482 Comparing instead of

assigning
Invalid use of == (equality) operator

484 Omitted break
statement in switch

Missing break of switch case

558 Use of getlogin() in
multithreaded
application

Unsafe standard function

562 Return of stack
variable address

Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-
family function argument

587 Assignment of a fixed
address to a pointer

Unsafe conversion between pointer and
integer

Function pointer assigned with absolute
address

676 Use of potentially
dangerous function

Unsafe conversion from string to
numerical value

Use of dangerous standard function

9 Configure Bug Finder Checkers

9-116

https://cwe.mitre.org/data/definitions/482.html
https://cwe.mitre.org/data/definitions/484.html
https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/676.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
690 Unchecked return

value to null pointer
dereference

Invalid use of standard library memory
routine

Use of tainted pointer

Null pointer

Returned value of a sensitive function
not checked

Invalid use of standard library string
routine

Unprotected dynamic memory allocation

Tainted NULL or non-null-terminated
string

Standard function call with incorrect
arguments

Invalid use of standard library routine
704 Incorrect type

conversion or cast
Character value absorbed into EOF

Qualifier removed in conversion

Precision loss in integer to float
conversion

Misuse of sign-extended character value

Unreliable cast of pointer

Wrong allocated object size for cast
762 Mismatched memory

management
routines

Invalid free of pointer

Mismatched alloc/dealloc functions on
Windows

 Mapping Between CWE-658 or 659 and Polyspace Results

9-117

https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/762.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
767 Access to critical

private variable via
public method

Return of non const handle to
encapsulated data member

783 Operator precedence
logic error

Possibly unintended evaluation of
expression because of operator
precedence rules

785 Use of path
manipulation
function without
maximum-sized
buffer

Use of path manipulation function
without maximum sized buffer checking

789 Uncontrolled
memory allocation

Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
805 Buffer access with

incorrect length
value

Hard-coded object size used to
manipulate memory

843 Access of resource
using incompatible
type ('Type
confusion')

Unreliable cast of pointer

910 Use of expired file
descriptor

Use of previously closed resource

Closing a previously closed resource

Standard function call with incorrect
arguments

See Also

More About
• “CWE Coding Standard and Polyspace Results” on page 9-66

9 Configure Bug Finder Checkers

9-118

https://cwe.mitre.org/data/definitions/767.html
https://cwe.mitre.org/data/definitions/783.html
https://cwe.mitre.org/data/definitions/785.html
https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/910.html

Configure Comment Import from
Previous Results

• “Import Comments from Previous Polyspace Analysis” on page 10-2
• “Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results”

on page 10-6

10

Import Comments from Previous Polyspace Analysis
After you have reviewed analysis results, you can reuse your review comments for
subsequent analyses. If you add comments to your results file, they carry over to the next
analysis on the same project. If you add comments to your code (annotate), they carry
over to any subsequent analysis of the code, whether in the same project or not. You can
also hide results using code annotations. For more information on commenting, see
Polyspace Bug Finder Access documentation.

This topic shows how to import comments from one result file to another. Importing
comments saves you from reviewing already justified results. For instance, after you
import comments, on the Results List pane (user interface of desktop products), clicking

the icon skips justified results. Using this icon, you can browse through unreviewed
results. You can also filter the justified checks from display.

Automatic Comment Import from Last Analysis
By default, in the Polyspace user interface (desktop products only), comments are
imported automatically from the most recent analysis on the project module. You can
disable this default behavior.

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, clear Automatically import comments from last

verification.
4 Click OK.

If you upload results to the Polyspace Access web interface, comments from the last run
of the same project are applied to the current run. You cannot disable the automatic
comment import.

If you run analysis at the command line (and do not upload results to the Polyspace
Access web interface), you have to explicitly import comments from another set of results.
See “Command Line” on page 10-3.

10 Configure Comment Import from Previous Results

10-2

Import Comments from Another Analysis Result
You can import comments directly from another Polyspace result to the current result.

If a result is found in both a Bug Finder and Code Prover analysis, you can comment on
the Bug Finder result and import the comment to Code Prover. For instance, most coding
rule checkers are common to Bug Finder and Code Prover. You can add comments to
coding rule violations in Bug Finder and import the comments to the same violations in
Code Prover.

User Interface (Desktop Products Only)

To import comments from another set of results:

1 Open the current analysis results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the other results file (with extension .psbf or .pscp) and then click Open.

The review comments from the previous results are imported into the current results.

Command Line

Use the option -import-comments during analysis to import comments from a previous
verification.

To import comments from multiple results, use the polyspace-comments-import
command.

Comment Import Algorithm
You can directly import review information from another set of results into the current
results. However, it is possible that part of your review information is not imported to a
subsequent analysis because:

 Import Comments from Previous Polyspace Analysis

10-3

• You have changed your source code so that the line with a previous result is not
exactly identical to the line in the current run.

The comment import tool accounts for additional code that simply shifts an existing
line. For instance, the tool recognizes that line 10 in Run 1 and line 12 in Run 2 have
the same statement. If a division by zero occurs on line 10 in Run 1 and you have not
fixed the issue in Run 2, the result along with associated review information are
imported to line 12 in Run 2.

• Run 1:

10 baseLine = min/numRecipients;
11
12

• Run 2:

10 /* Calculate a baseline per recipient
11 based on minimum available resources */
12 baseLine = min/numRecipients;

However, if you change the line content itself, for instance, change numRecipient to
numReceiver, the result and review information are not imported.

• You have changed your source code so that the Code Prover result color has changed.
• You entered new review information for the same result.

View Imported Comments That Do Not Apply
In the Polyspace user interface (desktop products only), the Import Checks and
Comments Report highlights differences between two analysis results. When you import
comments from a previous analysis, you can see this report. If you have closed the report
after an import, to review the report again:

1 Select Window > Show/Hide View > Import Comments Report.

The Import Checks and Comments Report opens, highlighting differences in the two
results.

10 Configure Comment Import from Previous Results

10-4

2 Review the differences between the two results.

Your review information can differ between two results because of the following reasons:

• In Code Prover, if the check color changes, Polyspace imports the Comment field but
not the Status field. In addition, Polyspace imports the Severity and Justified fields
depending on the color change.

Color Change Severity Justified
Orange or red to green Not imported Imported
Gray to green Not imported Imported, if the Severity

was set to High, Medium
or Low.

Red to orange or vice
versa

Imported Imported

Green to red/orange/gray Not imported Not imported

• If a result no longer appears in the code, Polyspace highlights only the change in the
Import Checks and Comments Report. It does not import review comments from the
previous result.

• If you have already entered different review comments for the same check, Polyspace
highlights only the change in the Import Checks and Comments Report. It does not
import review comments from the previous result.

See Also
-import-comments | polyspace-comments-import

 See Also

10-5

Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results

When you check your code for MISRA C: 2012 violations, Polyspace imports justifications
of MISRA C: 2004 violations from previous analyses (if they exist). You can upgrade from
checking of MISRA C: 2004 rules to MISRA C: 2012 rules while retaining your
justifications. For general rules on comment import, see “Import Comments from Previous
Polyspace Analysis” on page 10-2.

The software maps MISRA C: 2004 Status, Severity, and Comment values that you
added through the user interface or code annotations to the corresponding MISRA C:
2012 results, if the results exist. For more information about mapping, consult addendum
one of the MISRA C: 2012 publication.

If you are transitioning from MISRA C: 2004 to MISRA C: 2012, you do not have to review
results that you have already justified.

10 Configure Comment Import from Previous Results

10-6

Mapping Multiple MISRA C: 2004 Annotations to the Same
MISRA C: 2012 Result
When you justify MISRA C: 2004 violations by using code block syntax or multiple line
annotation syntax, and multiple violations map to the same MISRA C: 2012 rule,
Polyspace does not import each result justification. Instead, the software imports only one
set of Status, Severity, and Comment values and applies these values to all the
instances of that particular MISRA C: 2012 rule violation.

For example, suppose that you analyze your code and find violations of MISRA C: 2004
rules 16.3 and 16.5. You can justify these results by using the annotation syntax where
you enter a different status and explanatory comment for each rule.

//polyspace-begin misra2004:16.3 [Status 1] "Explanatory comment 1"
//polyspace-begin misra2004:16.5 [Status 2] "Explanatory comment 2"

code block start;
/* This block of code contains violations of
MISRA C:2004 rules 16.3 and 16.5 */
code block end;

//polyspace-end misra2004:16.3
//polyspace-end misra2004:16.5

 Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results

10-7

The previous violations map to MISRA C: 2012 rule 8.2. When you check your annotated
code against MISRA C: 2012 rules, Polyspace imports only the first line of annotations
(for rule 16.3) and applies it to all rule 8.2 results. The second line of annotations for rule
16.5 is ignored. In the Results List pane, all violations of rule 8.2 have the Status
column set to Status 1 and the Comment column set to "Explanatory comment 1".

Note The Output Summary pane displays a warning message for every result where the
imported annotation conflicts with the original annotation. After you import your MISRA
C: 2004 annotations, check that a justified status has not been assigned to results you
intend to investigate or fix.

See Also
Check MISRA C:2004 (-misra2) | Check MISRA C:2012 (-misra3)

10 Configure Comment Import from Previous Results

10-8

Troubleshooting in Polyspace Bug
Finder Server

• “License Error –4,0” on page 11-3
• “Read Error Information When Polyspace Analysis Stops” on page 11-4
• “Contact Technical Support” on page 11-5
• “Compiler Not Supported for Project Creation from Build Systems” on page 11-8
• “Slow Build Process When Polyspace Traces the Build” on page 11-18
• “Check if Polyspace Supports Build Scripts” on page 11-19
• “Troubleshooting Project Creation from MinGW Build” on page 11-21
• “Troubleshooting Project Creation from Visual Studio Build” on page 11-22
• “Error Processing Macro with Semicolon in Build System” on page 11-24
• “Polyspace Cannot Find the Server” on page 11-25
• “Job Manager Cannot Write to Database” on page 11-26
• “Undefined Identifier Error” on page 11-28
• “Unknown Function Prototype Error” on page 11-32
• “Error Related to #error Directive” on page 11-34
• “Large Object Error” on page 11-36
• “Errors Related to Generic Compiler” on page 11-39
• “Errors Related to Keil or IAR Compiler” on page 11-41
• “Errors Related to Diab Compiler” on page 11-42
• “Errors Related to Green Hills Compiler” on page 11-45
• “Errors Related to TASKING Compiler” on page 11-47
• “Errors from Conflicts with Polyspace Header Files” on page 11-49
• “Errors from Assertion or Memory Allocation Functions” on page 11-51
• “Error from Special Characters” on page 11-52
• “Errors from In-Class Initialization (C++)” on page 11-53

11

• “Errors from Double Declarations of Standard Template Library Functions (C++)”
on page 11-54

• “Errors Related to GNU Compiler” on page 11-55
• “Errors Related to Visual Compilers” on page 11-56
• “Error or Slow Runs from Disk Defragmentation and Anti-virus Software”

on page 11-58
• “SQLite I/O Error” on page 11-60

11 Troubleshooting in Polyspace Bug Finder Server

11-2

License Error –4,0

Issue
When you try to run Polyspace, you get this error message:

License Error -4,0

Possible Cause: Another Polyspace Instance Running
You can open multiple instances of Polyspace, but you can only run one code analysis at a
time.

If you try to run Polyspace processes from multiple windows, you will get a License
Error –4,0 error.

Solution

Only run one analysis at a time, including any command-line or plugin analyses.

Possible Cause: Prior Polyspace Run in Simulink or MATLAB
Coder
If you run Polyspace on generated code in the Simulink user interface or in the MATLAB
Coder app, you can get a license error if you try to run a subsequent analysis in the
Polyspace user interface. You get the error even if the previous run is over.

Solution

Run the subsequent analysis using the method that you used before, that is, in the
Simulink user interface or MATLAB Coder app.

If you want to run the analysis in the Polyspace user interface, close Simulink or MATLAB
Coder and then rerun the analysis.

 License Error –4,0

11-3

Read Error Information When Polyspace Analysis Stops
When you run a Polyspace analysis on your C/C++ code, if one or more of your files fail to
compile, the analysis continues with the remaining files. You can choose to stop the
analysis on compilation errors using the option Stop analysis if a file does not
compile (-stop-if-compile-error).

However, it is more convenient to let the analysis complete and capture all compilation
errors. In a continuous integration process, you can send a notification to the build
engineer with a list of compilation errors.

The compilation errors are displayed in the analysis log in addition to the options used
and the various stages of analysis. The analysis log is a text file generated in your results
folder and titled Polyspace_version_project_date_time.txt. The lines that
indicate errors begin with the Error: string and the lines that indicate warnings begin
with the Warning: string. Find these lines and extract them to another text file for easier
scanning.

11 Troubleshooting in Polyspace Bug Finder Server

11-4

Contact Technical Support
To contact MathWorks Technical Support, use this page. You need a MathWorks Account
login and password. For faster turnaround with an issue in Polyspace, besides the
required system information, provide appropriate code that reproduces the issue or the
verification log file.

Provide System Information
When you enter a support request, provide the following system information:

• Hardware configuration
• Operating system
• Polyspace and MATLAB license numbers
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain your configuration information, do one of the following:

• In the Polyspace user interface, select Help > About.
• At the command line, run the following command, replacing polyspaceroot with

your Polyspace installation folder:

• UNIX — polyspaceroot/polyspace/bin/polyspace-code-prover -ver
• Windows — polyspaceroot\polyspace\bin\polyspace-code-prover -ver

Provide Information About the Issue
Depending on the issue, provide appropriate artifacts to help Technical Support
understand and reproduce the issue.

Compilation Errors

If you face compilation issues with your project, see “Troubleshoot Compilation Errors”. If
you are still having issues, contact technical support with the following information:

 Contact Technical Support

11-5

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the error message, the
options used for the analysis and other relevant information.

• The source files related to the compilation error, if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the source code section that causes the compilation
issue.

• Try to reproduce the issue with a different code. Provide that code to technical
support.

Errors in Project Creation from Build Systems

If you face errors in creating a project from your build system, see “Troubleshoot Project
Creation”.

If you are still having issues, contact technical support with debug information. To
provide the debug information:

1 Run polyspace-configure at the command line with the options -debug and -
build-trace. For instance:

polyspace-configure options -debug -build-trace build.txt
 buildCommand 2>&1 > out.log

Here:

• options is the list of polyspace-configure options that you typically use.
• buildCommand is the build command that you use, for instance, make.

Make sure that you do not use the option -verbose or -silent after -debug.
2 Provide the files build.txt and out.log.

11 Troubleshooting in Polyspace Bug Finder Server

11-6

Verification Result

If you are having trouble understanding a result, see “Polyspace Bug Finder Results”
(Polyspace Bug Finder Access).

If you are still having trouble understanding the result, contact technical support with the
following information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the options used for
the analysis and other relevant information.

• The source files related to the result if possible.

If you cannot provide the source files:

• Try provide a screenshot of the relevant source code from the Source pane on the
Polyspace user interface.

• Try to reproduce the problem with a different code. Provide that code to technical
support.

 Contact Technical Support

11-7

Compiler Not Supported for Project Creation from Build
Systems

Issue
Your compiler is not supported for automatic project creation from build commands.

Cause
For automatic project creation from your build system, your compiler configuration must
be available to Polyspace. Polyspace provides a compiler configuration file only for certain
compilers.

For information on which compilers are supported, see “Requirements for Project
Creation from Build Systems” on page 5-21.

Solution
To enable automatic project creation for an unsupported compiler, you can write your own
compiler configuration file.

1 Copy one of the existing configuration files from polyspaceroot\polyspace
\configure\compiler_configuration\. Select the configuration that most
closely corresponds to your compiler using the .

2 Save the file as my_compiler.xml. my_compiler can be a name that helps you
identify the file.

To edit the file, save it outside the installation folder. After you have finished editing,
you must copy the file back to polyspaceroot\polyspace\configure
\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between
the XML elements with appropriate content.

4 After saving the edited XML file to polyspaceroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build
command.

If you see errors, for instance, compilation errors, contact MathWorks Technical
Support. After tracing your build command, the software compiles certain files using

11 Troubleshooting in Polyspace Bug Finder Server

11-8

the compiler specifications detected from your configuration file and build command.
Compilation errors might indicate issues in the configuration file.

Tip To quickly see if your compiler configuration file works, run the automatic
project setup on a sample build that does not take much time to complete. After you
have set up a project with your compiler configuration file, you can use this file for
larger builds.

Elements of Compiler Configuration File

The following table lists the XML elements in the compiler configuration file file with a
description of what the content within the element represents.

 Compiler Not Supported for Project Creation from Build Systems

11-9

XML Element Content Description Content
Example for
GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler
executable. This executable
transforms your .c files into
object files. You can add
several binary names, each in
a separate <name>...</
name> element. The software
checks for each of the
provided names and uses the
compiler name for which it
finds a match.

You must not specify the linker
binary inside the
<name>...</name>
elements.

If the name that you specify is
present in an existing compiler
configuration file, an error
occurs. To avoid the error, use
the additional option -
compiler-config
my_compiler.xml when
tracing the build so that the
software explicitly uses your
compiler configuration file.

• gcc
• gpp

11 Troubleshooting in Polyspace Bug Finder Server

11-10

XML Element Content Description Content
Example for
GNU C
Compiler

<include_options><opt> ...

</opt></include_options>

The option that you use with
your compiler to specify
include folders.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-I

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with
your compiler to specify
system headers.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-isystem

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use with
your compiler to force
inclusion of a file in the
compiled object.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-include

 Compiler Not Supported for Project Creation from Build Systems

11-11

XML Element Content Description Content
Example for
GNU C
Compiler

<define_options><opt> ...

</opt></define_options>

The option that you use with
your compiler to predefine a
macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-D

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with
your compiler to undo any
previous definition of a macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-U

11 Troubleshooting in Polyspace Bug Finder Server

11-12

XML Element Content Description Content
Example for
GNU C
Compiler

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to
modify the compiler behavior.
These options specify the
language settings to which the
code must conform.

You can use the isPrefix
attribute to specify multiple
options that have the same
prefix and the numArgs
attribute to specify options
with multiple arguments. For
instance:

• Instead of

<opt>-m32</opt>
<opt>-m64</opt>

You can write <opt
isPrefix="true">-m</
opt>.

• Instead of

<opt>-std=c90</opt>
<opt>-std=c99</opt>

You can write <opt
numArgs="1">-std</
opt>. If your makefile uses
-std c90 instead of -
std=c90, this notation also
supports that usage.

• -ansi
• -std =C90
• -std =c+

+11
• -fun

signed -
char

 Compiler Not Supported for Project Creation from Build Systems

11-13

XML Element Content Description Content
Example for
GNU C
Compiler

<dialect> ... </dialect> The Polyspace dialect that
corresponds to or closely
matches your compiler dialect.
The content of this element
directly translates to the
option Dialect in your
Polyspace project or options
file.

For the complete list of
compilers available, see
Compiler (-compiler).

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how
your compiler generates a
preprocessed file.

You can use the macro $
(OUTPUT_FILE) if your
compiler does not allow
sending the preprocessed file
to the standard output. Instead
it defines the preprocessed file
internally.

-E

For an example
of the $
(OUTPUT_FILE)
macro, see the
existing
compiler
configuration file
cl2000.xml.

11 Troubleshooting in Polyspace Bug Finder Server

11-14

XML Element Content Description Content
Example for
GNU C
Compiler

<preprocessed_output_file> ... </
preprocessed_output_file>

The name of file where the
preprocessed output is stored.

You can use the following
macros when the name of the
preprocessed output file is
adapted from the source file:

• $(SOURCE_FILE): Source
file name

• $(SOURCE_FILE_EXT):
Source file extension

• $
(SOURCE_FILE_NO_EXT):
Source file name without
extension

For instance, use $
(SOURCE_FILE_NO_EXT).pr
e when the preprocessor file
name has the same name as
the source file, but with
extension .pre.

For an example
of this element,
see the existing
compiler
configuration file
xc8.xml.

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source
files.

• c
• cpp
• c++

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object
files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if
available).

 Compiler Not Supported for Project Creation from Build Systems

11-15

XML Element Content Description Content
Example for
GNU C
Compiler

<polyspace_extra_options_list>
 <opt> ... </opt>
 <opt> ... </opt>
</polyspace_extra_options_list>

Additional options that are
used for the subsequent
analysis.

For instance, to avoid
compilation errors in the
subsequent analysis due to
non-ANSI extension keywords,
enter -D keyword=value, for
example:

<polyspace_extra_options_list>
 <opt>-D MACRO1</opt>
 <opt>-D MACRO2=VALUE</opt>
</polyspace_extra_options_list>

For more information, see
Preprocessor
definitions (-D).

Mapping Between Existing Configuration Files and Compiler Names

Select the configuration file in polyspaceroot\polyspace\configure
\compiler_configuration\ that most closely resembles the configuration of your
compiler. Use the following table to map compilers to their configuration files.

Compiler Name Vendor XML File
ARM® ARM Keil armcc.xml

armclang.xml
Visual C++ Microsoft cl.xml
Clang Not applicable clang.xml
CodeWarrior NXP cw_ppc.xml

cw_s12z.xml
cx6808 Cosmic cx6808.xml

11 Troubleshooting in Polyspace Bug Finder Server

11-16

Compiler Name Vendor XML File
Diab Wind River diab.xml
gcc Not applicable gcc.xml
Green Hills Green Hills Software ghs_arm.xml

ghs_arm64.xml
ghs_i386.xml
ghs_ppc.xml
ghs_rh850.xml
ghs_tricore.xml

IAR Embedded Workbench IAR iar.xml
iar-arm.xml
iar-avr.xml
iar-msp430.xml
iar-rh850.xml
iar-rl78.xml

Renesas Renesas renesas-rh850.xml
renesas-rl78.xml
renesas-rx.xml

TASKING® Altium tasking.xml
tasking-166.xml
tasking-850.xml
tasking-arm.xml

Tiny C Not applicable tcc.xml
TM320 and its derivatives Texas Instruments ti_arm.xml

ti_c28x.xml
ti_c6000.xml
ti_msp430.xml

xc8 (PIC) Microchip xc8.xml

 Compiler Not Supported for Project Creation from Build Systems

11-17

Slow Build Process When Polyspace Traces the Build

Issue
In some cases, your build process can run slower when Polyspace traces the build.

Cause
Polyspace caches information in files stored in the system temporary folder, such as
C:\Users\User_Name\AppData\Local\Temp, in Windows. Your build can take a long
time to perform read/write operations to this folder. Therefore, the overall build process is
slow.

Solution
You can work around the slow build process by changing the location where Polyspace
stores cache information. For instance, you can use a cache path local to the drive from
which you run build tracing. To create and use a local folder ps_cache for storing cache
information, use the advanced option -cache-path ./ps_cache.

• If you trace your build from the Polyspace user interface, enter this flag in the field
Add advanced configure options.

• If you trace your build from the DOS/ UNIX or MATLAB command line, use this flag
with the polyspace-configure command.

For more information, see polyspace-configure.

11 Troubleshooting in Polyspace Bug Finder Server

11-18

Check if Polyspace Supports Build Scripts

Issue
This topic is relevant only if you are creating a Polyspace project in Windows from your
build scripts.

When Polyspace traces your build script in a Windows console application other than
cmd.exe, the command fails. However, the build command by itself executes to
completion.

For instance, your build script executes to completion from the Cygwin shell. However,
when Polyspace traces the build, the build script throws an error.

Possible Cause
When you launch a Windows console application, your environment variables are
appropriately set. Alternate console applications such as the Cygwin shell can set your
environment differently from cmd.exe.

Polyspace attempts to trace your build script with the assumption that the script runs to
completion in cmd.exe. Therefore, even if your script runs to completion in the alternate
console application, when Polyspace traces the build, the script can fail.

Solution
Make sure that your build script executes to completion in the cmd.exe interface. If the
build executes successfully, create a wrapper .bat file around your script and trace this
file.

For instance, before you trace a build command that executes to completion in the
Cygwin shell, do one of the following:

• Launch the Cygwin shell from cmd.exe and then run your build script. For instance, if
you use a script build.sh to build your code, enter the following command at the
DOS command line:

cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh
• Find the full path to your build script and then run this script from cmd.exe.

 Check if Polyspace Supports Build Scripts

11-19

For instance, enter the following command at the DOS command line:

cmd.exe /C path_to_script

path_to_script is the full path to your build script. For instance, C:\my_scripts
\build.sh.

If the steps do not execute to completion, Polyspace cannot trace your build.

If the steps complete successfully, trace the build command after launching it from
cmd.exe. For instance, on the command-line, do the following to create a Polyspace
options file.

1 Enter your build commands in a .bat file.

rem @echo off
cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh

Name the file, for instance, launching.bat.
2 Trace the build commands in the .bat file and create a Polyspace options file.

"C:\Program Files\MATLAB\R2017b\polyspace\bin\polyspace-configure.exe"
 -output-options-file myOptions.txt launching.bat

You can now run polyspace-bug-finder-server on the options file.

11 Troubleshooting in Polyspace Bug Finder Server

11-20

Troubleshooting Project Creation from MinGW Build

Issue
You create a project from a MinGW build, but get an error when running an analysis on
the project. The error message comes from using one of these keywords: __declspec,
__cdecl, __fastcall, __thiscall or __stdcall.

Cause
When you create a project from a MinGW build, the project uses a GNU compiler.
Polyspace does not recognize these keywords for the GNU compilers.

Solution
Replace these keywords with equivalent keywords just for the purposes of analysis.

Before analysis, for the option Preprocessor definitions (-D), enter:

• __declspec(x)=__attribute__((x))
• __cdecl=__attribute__((__cdecl__))
• __fastcall=__attribute__((__fastcall__))
• __thiscall=__attribute__((__thiscall__))
• __stdcall=__attribute__((__stdcall__))

If you are running Polyspace on the command line in a UNIX shell, add double quotes
around the -D option. For instance, use:

"-D __cdecl=__attribute__((__cdecl__))"

 Troubleshooting Project Creation from MinGW Build

11-21

Troubleshooting Project Creation from Visual Studio
Build

In this section...
“Cannot Create Project from Visual Studio Build” on page 11-22
“Compilation Error After Creating Project from Visual Studio Build” on page 11-22

Cannot Create Project from Visual Studio Build
If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project and
polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Specify MSBuild.exe with the/nodereuse:false option.
4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS path>/msbuild sample.sln

Compilation Error After Creating Project from Visual Studio
Build
Issue

After you automatically set up your project from a Visual Studio 2010 build, you face
compilation errors.

Possible Cause

By default, Polyspace assigns the latest version of the compiler, visual12.0 to your
project. This assignment can cause compilation errors. For more information on the
option to specify compilers, see Compiler (-compiler).

Solution

To avoid the errors, do one of the following:

11 Troubleshooting in Polyspace Bug Finder Server

11-22

• After automatic project setup:

1 Open the project in the user interface. On the Configuration pane, select Target
& Compiler.

2 Check the setting for Compiler. If it is set to visual12.0, change it to
visual10.

Note If you are creating an options file from your Visual Studio 2010 build, check the
-compiler argument. If it is set to visual12.0, change it to visual10.

• Before automatic project setup:

1 Open the file cl.xml in polyspaceroot\polyspace\configure
\compiler_configuration\ where polyspaceroot is your Polyspace
installation folder such as C:\Program Files\Polyspace\R2019a.

2 Change the line

<dialect>visual12.0</dialect>

to

<dialect>visual10</dialect>
3 Create your project or options file. The compiler is already assigned to visual10.

 Troubleshooting Project Creation from Visual Studio Build

11-23

Error Processing Macro with Semicolon in Build System

Issue
You see this error when creating a Polyspace project or options file from your build
system:

Could not process macro containing a semicolon

Cause
Some options in your build system use semicolons in the replacement list of a macro.
Automatic project creation from build systems does not support this usage. For instance,
a macro OK with this replacement list can cause issues:

{printf("OK");flush();}

The use of semicolons in replacement lists is not supported because a Polyspace project
or options file created from your build system itself uses semicolon separators to separate
macro definitions. For details on the Polyspace options that define macros, see:

• Preprocessor definitions (-D): This option defines macros.
• -options-for-sources: This option collects several macro definitions, separated by

semicolon.

Solution
Define the macro in a header file instead of in the build system. For instance, define the
macro OK like this in a header file:

#ifdef OK_DEFINED
#undef OK_DEFINED
#define OK {printf("OK");flush();}
#endif

Provide the header file only for the purposes of Polyspace analysis using the option
Include (-include).

11 Troubleshooting in Polyspace Bug Finder Server

11-24

Polyspace Cannot Find the Server

Message
Error: Cannot instantiate Polyspace cluster
| Check the -scheduler option validity or your default cluster profile
| Could not contact an MJS lookup service using the host computer_name.
 The hostname, computer_name, could not be resolved.

Possible Cause
Polyspace uses information provided in the preferences of a Polyspace desktop product to
locate the server. If this information is incorrect, the software cannot locate the server.

Solution
Open the user interface of the Polyspace desktop product. Check if the server information
provided is correct.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Check your server information.

For instance, the entry in Job scheduler host name must match the host name of
the computer that forms the head node of the MATLAB Parallel Server cluster. For
more information, see “Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server”.

 Polyspace Cannot Find the Server

11-25

Job Manager Cannot Write to Database

Message
Unable to write data to the job manager database

Possible Cause
If the computer that forms the head node of the MATLAB Parallel Server cluster cannot
send data to the client computer, you see this error. The most likely reasons for the
remote computer being unable to connect to the client computer are:

• Firewalls do not allow traffic from the MATLAB Job Scheduler to the client.
• The MATLAB Job Scheduler cannot resolve the short hostname of the client computer.

Workaround
Add localhost IP to configuration.

1 In the user interface of the Polyspace desktop products, select Tools > Preferences.
2 On the Server Configuration tab, in the Localhost IP address field, enter the IP

address of your local computer.

To retrieve your IP address:

• Windows

1 Open Control Panel > Network and Sharing Center.
2 Select your active network.
3 In the Status window, click Details. Your IP address is listed under IPv4 address.

• Linux — Run the ifconfig command and find the inet addr corresponding to your
network connection.

• Mac — Open System Preferences > Network.

11 Troubleshooting in Polyspace Bug Finder Server

11-26

See Also

Related Examples
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote

Server”
• “Connection Problems Between the Client and MATLAB Job Scheduler” (Parallel

Computing Toolbox)

 See Also

11-27

Undefined Identifier Error

Issue
Polyspace verification fails during the compilation phase with a message about undefined
identifiers.

The message indicates that Polyspace cannot find a variable definition. Therefore, it
cannot identify the variable type.

Possible Cause: Missing Files
The source code you provided does not contain the variable definition. For instance, the
variable is defined in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution

If the variable definition occurs in an include file, add the folder that contains the include
file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder-server
command.

For more information, see -I.

Possible Cause: Unrecognized Keyword
The variable represents a keyword that your compiler recognizes but is not part of the
ANSI C standard. Therefore, Polyspace does not recognize it.

For instance, some compilers interpret __SP as a reference to the stack pointer.

11 Troubleshooting in Polyspace Bug Finder Server

11-28

Solution

If the variable represents a keyword that Polyspace does not recognize, replace or remove
the keyword from your source code or preprocessed code.

If you remove or replace the keyword from the preprocessed code, you can avoid the
compilation error while keeping your source code intact. You can do one of the following:

• Replace or remove each individual unknown keyword using an analysis option.
Replace the compiler-specific keyword with an equivalent keyword from the ANSI C
Standard.

For information on the analysis option, see Preprocessor definitions (-D).
• Declare the unknown keywords in a separate header file using #define directives.

Specify that header file using an analysis option.

For information on the analysis option, see Include (-include). For a sample
header file, see “Gather Compilation Options Efficiently” on page 5-30.

Possible Cause: Declaration Embedded in #ifdef Statements
The variable is declared in a branch of an #ifdef macro_name preprocessor directive.
For instance, the declaration of a variable max_power occurs as follows:

#ifdef _WIN32
 #define max_power 31
#endif

Your compilation toolchain might consider the macro macro_name as implicitly defined
and execute the #ifdef branch. However, the Polyspace compilation might not consider
the macro as defined. Therefore, the #ifdef branch is not executed and the variable
max_power is not declared.

Solution

To work around the compilation error, do one of the following:

• Use Target & Compiler options to directly specify your compiler. For instance, to
emulate a Visual C++ compiler, set the Compiler to visual12.0. See “Target and
Compiler”.

• Define the macro explicitly using the option Preprocessor definitions (-D).

 Undefined Identifier Error

11-29

Note If you create a Polyspace by tracing your build commands, most Target &
Compiler options are automatically set.

Possible Cause: Project Created from Non-Debug Build
This can be a possible cause only if the undefined identifier occurs in an assert
statement (or an equivalent Visual C++ macro such as ASSERT or VERIFY).

Typically, you come across this error in the following way. You create a Polyspace project
from a build system in non-debug mode. When you run an analysis on the project, you
face a compilation error from an undefined identifier in an assert statement. You find
that the identifier my_identifier is defined in a #ifndef NDEBUG statement, for
instance as follows:

#ifndef NDEBUG
int my_identifier;
#endif

The C standard states that when the NDEBUG macro is defined, all assert statements must
be disabled.

Most IDEs define the NDEBUG macro in their build systems. When you build your source
code in your IDE in non-debug mode, code in a #ifndef NDEBUG statement is removed
during preprocessing. For instance, in the preceding example, my_identifier is not
defined. If my_identifier occurs only in assert statements, it is not used either,
because NDEBUG disables assert statements. You do not have compilation errors from
undefined identifiers and your build system executes successfully.

Polyspace does not disable assert statements even if NDEBUG macro is defined because
the software uses assert statements internally to enhance verification.

When you create a Polyspace project from your build system, if your build system defines
the NDEBUG macro, it is also defined for your Polyspace project. Polyspace removes code
in a #ifndef NDEBUG statement during preprocessing, but does not disable assert
statements. If assert statements in your code rely on the code in a #ifndef NDEBUG
statement, compilation errors can occur.

In the preceding example:

• The definition of my_identifier is removed during preprocessing.

11 Troubleshooting in Polyspace Bug Finder Server

11-30

• assert statements are not disabled. When my_identifier is used in an assert
statement, you get an error because of undefined identifier my_identifier.

Solution

To work around this issue, create a Polyspace project from your build system in debug
mode. When you execute your build system in debug mode, NDEBUG is not defined. When
you create a Polyspace project from this build, NDEBUG is not defined for your Polyspace
project.

Depending on your project settings, use the option that enables building in debug mode.
For instance, if your build system is gcc-based, you can define the DEBUG macro and
undefine NDEBUG:

gcc -DDEBUG=1 -UNDEBUG *.c

Alternatively, you can disable the assert statements in your preprocessed code using the
option Preprocessor definitions (-D). However, Polyspace will not be able to
emulate the assert statements.

 Undefined Identifier Error

11-31

Unknown Function Prototype Error

Issue
During the compilation phase, the software displays a warning or error message about
unknown function prototype.

the prototype for function 'myfunc' is unknown

The message indicates that Polyspace cannot find a function prototype. Therefore, it
cannot identify the data types of the function argument and return value, and has to infer
them from the calls to the function.

To determine the data types for such functions, Polyspace follows the C99 Standard
(ISO/IEC 9899:1999, Chapter 6.5.2.2: Function calls).

• The return type is assumed to be int.
• The number and type of arguments are determined by the first call to the function. For

instance, if the function takes one double argument in the first call, for subsequent
calls, the software assumes that it takes one double argument. If you pass an int
argument in a subsequent call, a conversion from int to double takes place.

During the linking phase, if a mismatch occurs between the number or type of arguments
or the return type in different compilation units, the analysis follows an internal algorithm
to resolve this mismatch and determine a common prototype.

Cause
The source code you provided does not contain the function prototype. For instance, the
function is declared in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution
Search for the function declaration in your source repository.

11 Troubleshooting in Polyspace Bug Finder Server

11-32

If you find the function declaration in an include file, add the folder that contains the
include file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder-server
command.

For more information, see -I.

 Unknown Function Prototype Error

11-33

Error Related to #error Directive

Issue
The analysis stops with a message containing a #error directive. For instance, the
following message appears: #error directive: !Unsupported platform;
stopping!.

Cause
You typically use the #error directive in your code to trigger a fatal error in case certain
macros are not defined. Your compiler implicitly defines the macros, therefore the error is
not triggered when you compile your code. However, the default Polyspace compilation
does not consider the macros as defined, therefore, the error occurs.

For instance, in the following example, the #error directive is reached only if the macros
__BORLANDC__, __VISUALC32__ or __GNUC__ are not defined. If you use a GNU C
compiler, for instance, the compiler considers the macro __GNUC__ as defined and the
error does not occur. However, if you use the default Polyspace compilation, it does not
consider the macros as defined.

#if defined(__BORLANDC__) || defined(__VISUALC32__)
#define MYINT int
#elif defined(__GNUC__)
#define MYINT long
#else
#error !Unsupported platform; stopping!
#endif

Solution
For successful compilation, do one of the following:

• Specify a compiler such as visual12.0 or gnu4.9. Specifying a compiler defines
some of the compilation flags for the analysis.

For more information, see Compiler (-compiler).
• If the available compiler options do not match your compiler, explicitly define one of

the compilation flags __BORLANDC__, __VISUALC32__, or __GNUC__.

11 Troubleshooting in Polyspace Bug Finder Server

11-34

For more information, see Preprocessor definitions (-D).

 Error Related to #error Directive

11-35

Large Object Error

Issue
The analysis stops during compilation with a message indicating that an object is too
large.

Cause
The error happens when the software detects an object such as an array, union, structure,
or class, that is too big for the pointer size of the selected target.

For instance, you get the message, Limitation: struct or union is too large
in the following example. You specify a pointer size of 16 bits. The maximum object size
allocated to a pointer, and therefore the maximum allowed size for an object, can be 216-1
bytes. However, you declare a structure as follows:

• struct S
{
 char tab[65536];
}s;

• struct S
{
 char tab[65534];
 int val;
}s;

Solution
1 Check the pointer size that you specified through your target processor type. For

more information, see Target processor type (-target).

For instance, in the following, the pointer size for a custom target My_target is 16
bits.

11 Troubleshooting in Polyspace Bug Finder Server

11-36

2 Change your code or specify a different pointer size.

For instance, you can:

• Declare an array of smaller size in the structure.

If you are using a predefined target processor type, the pointer size is likely to be
the same as the pointer size on your target architecture. Therefore, your
declaration might cause errors on your target architecture.

• Change the pointer size of the target processor type that you specified, if possible.

Otherwise, specify another target processor type with larger pointer size or define
your own target processor type. For more information on defining your own
processor type, see Generic target options.

 Large Object Error

11-37

Note Polyspace imposes an internal limit of 128 MB on the size of data
structures. Even if your target processor type specification allows data structures
of larger size, this internal limit constrains the data structure sizes.

11 Troubleshooting in Polyspace Bug Finder Server

11-38

Errors Related to Generic Compiler
If you use a generic compiler, you can encounter this issue. For more information, see
Compiler (-compiler).

Issue
The analysis stops with an error message related to a non-ANSI C keyword, for instance,
data or attributes such as __attribute__((weak)).

Depending on the location of the keyword, the error message can vary. For instance, this
line causes the error message: expected a ";".

data int tab[10];

Cause
The generic Polyspace compiler supports only ANSI C keywords. If you use a language
extension, the generic compiler does not recognize it and treats the keyword as a regular
identifier.

Solution
Specify your compiler by using the option Compiler (-compiler).

If your compiler is not directly supported or is not based on a supported compiler, you can
use the generic compiler. To work around the compilation errors:

• If the keyword is related to memory modelling, remove it from the preprocessed code.
For instance, to remove the data keyword, enter data= for the option Preprocessor
definitions (-D).

• If the keyword is related to an attribute, remove attributes from the preprocessed
code. Enter __attribute__(x)= for the option Preprocessor definitions (-
D).

If your code has this line:

void __attribute__ ((weak)) func(void);

And you remove attributes, the analysis reads the line as:

 Errors Related to Generic Compiler

11-39

void func(void);

When you use these workarounds, your source code is not altered.

11 Troubleshooting in Polyspace Bug Finder Server

11-40

Errors Related to Keil or IAR Compiler
If you use the compiler, Keil or IAR, you can encounter this issue. For more information,
see Compiler (-compiler).

Missing Identifiers
Issue

The analysis stops with the error message, expected an identifier, as if an
identifier is missing. However, in your source code, you can see the identifier.

Cause

If you select Keil or IAR as your compiler, the software removes certain keywords during
preprocessing. If you use these keywords as identifiers such as variable names, a
compilation error occurs.

For a list of keywords that are removed, see “Supported Keil or IAR Language
Extensions” on page 5-24.

Solution

Specify that Polyspace must not remove the keywords during preprocessing. Define the
macros __PST_KEIL_NO_KEYWORDS__ or __PST_IAR_NO_KEYWORDS__.

For more information, see Preprocessor definitions (-D).

 Errors Related to Keil or IAR Compiler

11-41

Errors Related to Diab Compiler
If you choose diab for the option Compiler (-compiler), you can encounter this
issue.

Issue
During Polyspace analysis, you see an error related to a keyword specific to the Diab
compiler. For instance, you see an error related to the restrict keyword.

Cause
You typically use a compiler flag to enable the keyword. The Polyspace analysis does not
enable these keywords by default. You have to make Polyspace aware of your compiler
flags.

The Polyspace analysis does not enable these keywords by default to prevent compilation
errors. Another user might not enable the keyword and instead use the keyword name as
a regular identifier. If Polyspace treats the identifier as a keyword, a compilation error
will occur.

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as
follows. You use this command-line option to make Polyspace aware of your compiler
flags. In the user interface of the Polyspace desktop products, you can enter the
command-line option in the field Other. You can enter the option multiple times.

The argument of -compiler-parameter depends on the keyword that causes the error.
Once you enable the keyword, do not use the keyword name as a regular identifier. For
instance, once you enable the keyword pixel, do not use pixel as a variable name. The
statement int pixel = 1 causes a compilation error.

• restrict keyword:

You typically use the compiler flag -Xlibc-new or -Xc-new. For your Polyspace
analysis, use

-compiler-parameter -Xc-new

11 Troubleshooting in Polyspace Bug Finder Server

11-42

The following code will not compile with Polyspace unless you specify the compiler
flag.

int sscanf(const char *restrict, const char *restrict, ...);
• PowerPC AltiVec vector extensions such as the vector type qualifier:

You typically use the compiler flag -tPPCALLAV:. For your Polyspace analysis, use

-compiler-parameter -tPPCALLAV:

The following code will not compile with Polyspace unless you specify the compiler
flag.

vector unsigned char vbyte;
vector bool vbool;
vector pixel vpx;

int main(int argc, char** argv)
{
 return 0;
}

• Extended keywords such as pascal, inline, packed, interrupt, extended, __X,
__Y, vector, pixel, bool and others:

You typically use the compiler flag -Xkeywords=. For your Polyspace analysis, use

-compiler-parameter -Xkeywords=0xFFFFFFFF

The following code will not compile with Polyspace unless you specify the compiler
flag.

packed(4) struct s2_t {
 char b;
 int i;
} s2;

packed(4,2) struct s3_t {
 char b;
} s3;

int pascal foo = 4;

int main(int argc, char** argv) {
 foo++;

 Errors Related to Diab Compiler

11-43

 return 0;
}

11 Troubleshooting in Polyspace Bug Finder Server

11-44

Errors Related to Green Hills Compiler
If you choose greenhills for the option Compiler (-compiler), you encounter this
issue.

Issue
During Polyspace analysis, you see an error related to vector data types specific to Green
Hills target rh850. For instance, you see an error related to identifier __ev64_u16__.

Cause
When compiling code using the Green Hills compiler with target rh850, to enable single
instruction multiple data (SIMD) vector instructions, you specify two flags:

• -rh850_simd: You enable intrinsic functions that support SIMD vector instructions.
The functions are defined in your compiler header files. These data types are available:

• __ev64_u16__
• __ev64_s16__
• __ev64_u32__
• __ev64_s32__
• __ev64_u64__
• __ev64_s64__
• __ev64_opaque__
• __ev128_opaque__

• -rh850_fpsimd: You enable intrinsic functions that support floating-point SIMD
vector instructions. The functions are defined in your compiler header files. These data
types are available:

• __ev128_f32__
• __ev256_f32__

The Polyspace analysis does not enable SIMD support by default. You must identify your
compiler flags to Polyspace.

 Errors Related to Green Hills Compiler

11-45

Solution
In your Polyspace analysis, use the command-line option -compiler-parameter. In the
user interface, you can enter the command-line option in the Other field, under the
Advanced Settings in the Configuration pane.

• -rh850_simd: For your Polyspace analysis, use

-compiler-parameter -rh850_simd
• -rh850_fpsimd: For your Polyspace analysis, use

-compiler-parameter -rh850_fpsimd

Note

• __ev128_opaque__ is 16 bytes aligned in Polyspace.
• __ev256_f32__ is 32 bytes aligned in Polyspace.

11 Troubleshooting in Polyspace Bug Finder Server

11-46

Errors Related to TASKING Compiler
If you choose tasking for the option Compiler (-compiler), you can encounter this
issue.

Issue
During Polyspace analysis, you see an error related to a Special Function Register data
type.

Cause
When compiling with the TASKING compiler, you typically use the following compiler
flags to specify where Special Function Register (SFR) data types are declared:

• --cpu=xxx: The compiler implicitly #includes the file sfr/regxxx.sfr in your
source files. Once #include-ed, you can use Special Function Registers (SFR-s)
declared in that .sfr file.

• --alternative-sfr-file: The compiler uses an alternative SFR file instead of the
regular SFR file. You can use Special Function Registers (SFR-s) declared in that
alternative SFR file.

If you specify the TASKING compiler for your Polyspace analysis, the analysis makes the
following assumptions about these compiler flags:

• --cpu=xxx: The analysis chooses a specific value of xxx. If you use a different value
with your TASKING compiler, you can encounter an error during Polyspace analysis.

The xxx value that the Polyspace analysis uses depends on your choice of Target
processor type (-target):

• tricore: tc1793b
• c166: xc167ci
• rh850: r7f701603
• arm: ARMv7M

• --alternative-sfr-file: The analysis assumes that you do not use an alternative
SFR file. If you use one, you can encounter an error.

 Errors Related to TASKING Compiler

11-47

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as
follows. You use this command-line option to make Polyspace aware of your compiler
flags. In the user interface, you can enter the command-line option in the field Other. You
can enter the option multiple times.

• --cpu=xxx: For your Polyspace analysis, use

-compiler-parameter --cpu=xxx

Here, xxx is the value that you use when compiling with your compiler.
• --alternative-sfr-file: For your Polyspace analysis, use

-compiler-parameter --alternative-sfr-file

If you still encounter an error because Polyspace is not able to locate your .asfr file,
explicitly #include your .asfr file in the preprocessed code using the option
Include (-include).

Typically, the path to the file is Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in
C:\Program Files\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag
-Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program Files
\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

You can also encounter the same issue with alternative sfr files when you trace your
build command. For more information, see “Requirements for Project Creation from
Build Systems” on page 5-21.

11 Troubleshooting in Polyspace Bug Finder Server

11-48

Errors from Conflicts with Polyspace Header Files

Issue
You see compilation errors from header files included by Polyspace.

For instance, the error message refers to one of the subfolders of polyspaceroot
\polyspace\verifier\cxx\include.

Typically, the error message is related to a standard library function.

Cause
If your compiler defines a standard library function or another construct and you do not
provide the path to your compiler header files, Polyspace uses its own implementation of
the function.

If your compiler definitions differ from the corresponding Polyspace definitions, the
verification stops with an error.

Solution
Specify the folder containing your compiler header files.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder-server
command.

For more information, see -I.

For compilation with GNU C on UNIX-based platforms, use /usr/include. On
embedded compilers, the header files are typically in a subfolder of the compiler
installation folder. Examples of include folders are given for some compilers.

• Wind River Diab: For instance, /apps/WindRiver/Diab/5.9.4/diab/5.9.4.8/
include/.

 Errors from Conflicts with Polyspace Header Files

11-49

• IAR Embedded Workbench: For instance, C:\Program Files\IAR Systems
\Embedded Workbench 7.5\arm\inc.

• Microsoft Visual Studio: For instance, C:\Program Files\Microsoft Visual
Studio 14.0\VC\include.

Consult your compiler documentation for the path to your compiler header files.
Alternatively, see “Provide Standard Library Headers for Polyspace Analysis” on page 5-
19.

11 Troubleshooting in Polyspace Bug Finder Server

11-50

Errors from Assertion or Memory Allocation Functions

Issue
Polyspace uses its own implementation of standard library functions for more efficient
analysis. If you redefine a standard library function and provide the function body to
Polyspace, the analysis uses your definition.

However, for certain standard library functions, Polyspace continues to use its own
implementations, even if you redefine the function and provide the function body. The
functions include assert and memory allocation functions such as malloc, calloc and
alloca.

You see a warning message like the following:

Body of routine "malloc" was discarded.

Cause
These functions have special meaning for the Polyspace analysis, so you are not allowed
to redefine them. For instance:

• The Polyspace implementation of the malloc function allows the software to check if
memory allocated using malloc is freed later.

• The Polyspace implementation of assert is used internally to enhance analysis.

Solution
Unless you particularly want your own redefinitions to be used, ignore the warning. The
analysis results are based on Polyspace implementations of the standard library function,
which follow the original function specifications.

If you want your own redefinitions to be used and you are sure that your redefined
function behaves the same as the original function, rename the functions. You can rename
the function only for the purposes of analysis using the option Preprocessor
definitions (-D). For instance, to rename a function malloc to my_malloc, use
malloc=my_malloc for the option argument.

 Errors from Assertion or Memory Allocation Functions

11-51

Error from Special Characters

Issue
Your file or folder names contain extended ASCII characters, such as accented letters or
Kanji characters. You face file access errors during analysis. Error messages you might
see include:

• No source files to analyze
• Control character not valid
• Cannot create directory Folder_Name

Cause
Polyspace does not fully support these characters. If you use extended ASCII in your file
or folder names, your Polyspace analysis may fail due to file access errors.

Workaround
Change the unsupported ASCII characters to standard US-ASCII characters.

11 Troubleshooting in Polyspace Bug Finder Server

11-52

Errors from In-Class Initialization (C++)
When a data member of a class is declared static in the class definition, it is a static
member of the class. You must initialize static data members outside the class because
they exist even when no instance of the class has been created.

class Test
{
public:

 static int m_number = 0;
};

Error message:
Error: a member with an in-class initializer must be const

Corrected code:

in file Test.h in file Test.cpp
class Test
{
public:
static int m_number;
};

int Test::m_number = 0;

 Errors from In-Class Initialization (C++)

11-53

Errors from Double Declarations of Standard Template
Library Functions (C++)

Consider the following code.

#include <list>

void f(const std::list<int*>::const_iterator it) {}
void f(const std::list<int*>::iterator it) {}
void g(const std::list<int*>::const_reverse_iterator it) {}
void g(const std::list<int*>::reverse_iterator it) {}

The declared functions belong to list container classes with different iterators.
However, the software generates the following compilation errors:

error: function "f" has already been defined
error: function "g" has already been defined

You would also see the same error if, instead of list, the specified container was
vector, set, map, or deque.

To avoid the double declaration errors, do one of the following:

• Deactivate automatic stubbing of standard template library functions. For more
information, see No STL stubs (-no-stl-stubs).

• Define the following Polyspace preprocessing directives:

• __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_VECTOR_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_SET_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_MAP_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_DEQUE_CONST_ITERATOR_DIFFER_ITERATOR__

For example, for the given code, run analysis at the command line with the following
flag. The flag defines the appropriate directive for the list container.

-D __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

For more information on defining preprocessor directives, see Preprocessor
definitions (-D).

11 Troubleshooting in Polyspace Bug Finder Server

11-54

Errors Related to GNU Compiler
If you choose gnu for the option Compiler (-compiler), you can encounter this issue.

Issue
The Polyspace analysis stops with a compilation error.

Cause
You are using certain advanced compiler-specific extensions that Polyspace does not
support. See “Limitations”.

Solution
For easier portability of your code, avoid using the extensions.

If you want to use the extensions and still analyze your code, wrap the unsupported
extensions in a preprocessor directive. For instance:

#ifdef POLYSPACE
 // Supported syntax
#else
 // Unsupported syntax
#endif

For regular compilation, do not define the macro POLYSPACE. For Polyspace analysis,
enter POLYSPACE for the option Preprocessor definitions (-D).

If the compilation error is related to assembly language code, use the option -asm-begin
-asm-end.

 Errors Related to GNU Compiler

11-55

Errors Related to Visual Compilers
The following messages appear if the compiler is based on a Visual compiler. For more
information, see Compiler (-compiler).

Import Folder
When a Visual application uses #import directives, the Visual C++ compiler generates a
header file with extension .tlh that contains some definitions. To avoid compilation
errors during Polyspace analysis, you must specify the folder containing those files.

Original code:

#include "stdafx.h"
#include <comdef.h>
#import <MsXml.tlb>
MSXML::_xml_error e ;
MSXML::DOMDocument* doc ;
int _tmain(int argc, _TCHAR* argv[])
{
 return 0;
}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not
open source file "./MsXml.tlh"
 #import <MsXml.tlb>

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or
Release). In order to provide those files:

• Build your Visual C++ application.
• Specify your build folder for the Polyspace analysis.

pragma Pack
Using a different value with the compile flag (#pragma pack) can lead to a linking error
message.

Original code:

11 Troubleshooting in Polyspace Bug Finder Server

11-56

test1.cpp type.h test2.cpp
#pragma pack(4)

#include "type.h"

struct A
{
 char c ;
 int i ;
} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...
"../sources/type.h", line 2: error: declaration of class "A" had
a different meaning during compilation of "test1.cpp"
(class types do not match)
 struct A
 ^
 detected during compilation of secondary translation unit
"test2.cpp"

To continue the analysis, use the option Ignore pragma pack directives (-
ignore-pragma-pack).

C++/CLI
Polyspace does not support Microsoft C++/CLI, a set of language extensions for .NET
programming.

You can get errors such as:

error: name must be a namespace name
| using namespace System;

Or:

error: expected a declaration
| public ref class Form1 : public System::Windows::Forms::Form

 Errors Related to Visual Compilers

11-57

Error or Slow Runs from Disk Defragmentation and Anti-
virus Software

Issue
In some cases, anti-virus software checks can noticeably slow down a Polyspace analysis.
This reduction occurs because the software checks the temporary files produced by the
Polyspace analysis.

You see noticeably slow analysis for a simple project or the analysis stops with an error
message like the following:
Some stats on aliases use:
 Number of alias writes: 22968
 Number of must-alias writes: 3090
 Number of alias reads: 0
 Number of invisibles: 949
Stats about alias writes:
 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)
 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),
 foo3 (1288)
**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)
exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.
unhandled exception: SysErr: No such file or directory [noent]

--
--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

Possible Cause
A disk defragmentation tool or anti-virus software is running on your machine.

After starting an analysis, check the processes running and see if an anti-virus process is
causing large amount of CPU usage (and possibly memory usage).

Solution
Try:

11 Troubleshooting in Polyspace Bug Finder Server

11-58

• Stopping the disk defragmentation tool.
• Deactivating the anti-virus software. Or, configuring exception rules for the anti-virus

software to allow Polyspace to run without a failure.

For instance, you can try the following:

• Configure the anti-virus software to whitelist the Polyspace executables.

For instance, in Windows, with the anti-virus software Windows Defender, you can
add an exclusion for the Polyspace installation folder C:\Program Files
\Polyspace\R2019a, in particular, the .exe files in the subfolder polyspace
\bin and the .exe files starting with ps_ in the subfolder bin\win64.

• Configure the anti-virus software to exclude your temporary folder, for example,
C:\Temp, from the checking process.

 Error or Slow Runs from Disk Defragmentation and Anti-virus Software

11-59

SQLite I/O Error

Issue
When you try to run Polyspace, you get this error message:

Cause
Polyspace uses an SQLite database for storing results. This error can appear when SQLite
databases are saved on NFS (Network File System) folders.

Solution
Check the folder where you save Polyspace results. For instance, if you run Polyspace at
the command line, check the option -results-dir.

If the folder is an NFS folder, use a local folder instead.

11 Troubleshooting in Polyspace Bug Finder Server

11-60

